DOI QR코드

DOI QR Code

Prediction of a Strong Effect of a Wek Magnetic Field on Diffusion Assisted Reactions in Non Equilibrium Conditions

  • Kipriyanov, Alexey A. Jr. (Institute of Chemical Kinetics and Combustion SB RAS) ;
  • Purtov, Peter A. (Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk, Russia and Novosibirsk State University)
  • Received : 2011.11.30
  • Accepted : 2012.02.04
  • Published : 2012.03.20

Abstract

The influence of magnetic fields on chemical processes has long been the subject of interest to researchers. For this time numerous investigations show that commonly the effect of a magnetic field on chemical reactions is insignificant with impact less than 10 percent. However, there are some papers that point to the observation of external magnetic field effect on chemical and biochemical systems actually having a significant impact on the reactions. Thus, of great interest is an active search for rather simple but realistic models, that are based on physically explicit assumptions and able to account for a strong effect of low magnetic fields. The present work theoretically deals with two models explaining how an applied weak magnetic field might influence the steady state of a non-equilibrium chemical system. It is assumed that external magnetic field can have effect on the rates of radical reactions occurring in a system. This, in turn, leads to bifurcation of the nonequilibrium stationary state and, thus, to a drastic change in the properties of chemical systems (temperature and reagent concentration).

Keywords

References

  1. Salikhov, K. M.; Molin, Yu. N.; Sagdeev, R. Z.; Buchachenko, A. L. Spin Polarization and Magnetic Effects in Radical Reactions; Elsevier: Amsterdam, 1984.
  2. Steiner, U. Z. Naturforsch. A 1979, 34, 1093.
  3. Turro, N.; Chow, V.-F.; Chung, Ch.-J.; Tung, Ch.-H. J. Amer. Chem. Soc. 1983, 105, 1572. https://doi.org/10.1021/ja00344a025
  4. Tanimoto, Y.; Takase, S.; Jinda, C.; Kyotani, M.; Itoh, M. Chem. Phys. 1992, 162, 7. https://doi.org/10.1016/0301-0104(92)80216-I
  5. Møller, A. C.; Lunding, A.; Olsen, L. F. Phys. Chem. Chem. Phys. 2000, 2, 3443. https://doi.org/10.1039/b003641m
  6. Afanasyeva, M. S.; Taraban, M. B.; Purtov, P. A.; Leshina, T. V.; Grissom, C. B. JACS 2006, 128, 8651. https://doi.org/10.1021/ja0585735
  7. Kaptein, R.; Oosterhoff, J. L. Chem. Phys. Lett. 1969, 4, 195. https://doi.org/10.1016/0009-2614(69)80098-9
  8. Kaptein, R.; Oosterhoff, J. L. Chem. Phys. Lett. 1969, 4, 214. https://doi.org/10.1016/0009-2614(69)80105-3
  9. Closs, G. L. J. Amer. Chem. Soc. 1969, 91, 4552. https://doi.org/10.1021/ja01044a043
  10. Fedin, M. V.; Purtov, P. A.; Bagryanskaya, E. G. J. Chem. Phys. 2003, 118, 192. https://doi.org/10.1063/1.1523012
  11. Purtov, P. A.; Salikhov, K. M. Teoretich. I Experim. Khimiya 1980, 16(5), 579.
  12. Brocklehurst, B.; McLauchlan, K. Int. J. Radiat. Biol. 1996, 69, 3. https://doi.org/10.1080/095530096146147
  13. Keizer, J. Statistical Thermodynamics of Nonequilibrium Processes; Springer-Verlag: New York, 1990.
  14. Kaiser, F. Bioelectrochemistry and Bioenergetics 1996, 41, 3. https://doi.org/10.1016/0302-4598(96)05085-4
  15. Binhi, V. N.; Savin, A. V. Physics-Uspekhi. 2003, 173(3), 265. https://doi.org/10.3367/UFNr.0173.200303b.0265
  16. Purtov, P. A. Appl. Magn. Reson. 2004, 26, 83. https://doi.org/10.1007/BF03166564
  17. Kipriyanov, A. A., Jr.; Purtov, P. A. Vestnik NGU: Physics. 2007, 2(4), 88 [in Russian].
  18. Kipriyanov, A. A., Jr.; Purtov. P. A. J. Chem. Phys. 2011, 134, 044518. https://doi.org/10.1063/1.3533265
  19. Popov, A. V.; Purtov, P. A.; Yurkovskaya, A. V. Chem. Phys. 2000, 252, 83. https://doi.org/10.1016/S0301-0104(99)00293-1
  20. Yurkovskaya, A.; Grosse, S.; Dvinskikh, S.; Morozova, O.; Vieth, H.-M. J. Phys. Chem. A 1999, 103, 980. https://doi.org/10.1021/jp9836325
  21. Tanimoto, Y.; Okada, N.; Takamatsu, S.; Itoh, M. Bull. Chem. Soc. Jpn. 1990, 63, 1342. https://doi.org/10.1246/bcsj.63.1342
  22. Yurkovskaya, A.; Grosse, S.; Dvinskikh, S.; Morozova, O.; Vieth, H.-M. J. Phys. Chem. A. 1999, 103, 980. https://doi.org/10.1021/jp9836325
  23. Kanter, F. J. J.; Holander, J. A.; Huiser, A. H.; Kaptein, R. Mol. Phys. 1977, 34, 857. https://doi.org/10.1080/00268977700102161
  24. Closs, G. L.; Forbes, M. D. E.; Piotrowiak, P. J. Amer. Chem. Soc. 1992, 114, 3285. https://doi.org/10.1021/ja00035a020
  25. Emanuel', N. M.; Gagarina, A. B. Russ. Chem. Rev. 1966, 35(4), 260. https://doi.org/10.1070/RC1966v035n04ABEH001461
  26. Emanuel', N. M.; Knorre, D. G. Chemical Kinetics: Homogeneous Reactions, Vysshaya Shkola: Moscow, 1969.
  27. Emanuel', N. M., Knorre, D. C. Chemical Kinetics: Homogeneous Reactions; John Wiley: New York, 1973.
  28. Bamford, C. H.; Tipper, C. F. H. Comprehensive Chemical Kinetics; Elsevier: Amsterdam, 1980.
  29. Shantarovich, P. S. Zh. Fiz. Khimii. 1937, 10, 700.
  30. Sadovnikov, P. Ya. Zh. Fiz. Khimii. 1937, 9, 575.
  31. Spense, R. J. Chem. Soc. 1932; p 686. https://doi.org/10.1039/jr9320000686
  32. Kubarev, S. I.; Pshenichnov, E. A.; Shustov, A. S. Theoretical and Experimental Chemistry 1979, 15(1), 10. https://doi.org/10.1007/BF00524901

Cited by

  1. The Kabachnik-Fields Reaction Accelerated in External Magnetic Field vol.25, pp.3, 2014, https://doi.org/10.1002/hc.21149
  2. Magnetic field effects on bistability and bifurcation phenomena in lipid peroxidation vol.36, pp.7, 2015, https://doi.org/10.1002/bem.21934
  3. Assisted of electromagnetic fields in glucose production from cassava stems vol.141, pp.1755-1315, 2018, https://doi.org/10.1088/1755-1315/141/1/012017