• Title/Summary/Keyword: static method

Search Result 4,702, Processing Time 0.028 seconds

A combined experimental and numerical method for structural response assessment applied to cable-stayed footbridges

  • Kossakowski, Pawel G.
    • Advances in Computational Design
    • /
    • v.2 no.3
    • /
    • pp.143-163
    • /
    • 2017
  • This paper presents a non-destructive testing method for estimating the structural response of cable-stayed footbridges. The approach combines field measurements with a numerical static analysis of the structure. When the experimental information concerning the structure deformations is coupled with the numerical data on the structural response, it is possible to calculate the static forces and the design tension resistance in selected structural elements, and as a result, assess the condition of the entire structure. The paper discusses the method assumptions and provides an example of the use of the procedure to assess the load-carrying capacity of a real steel footbridge. The proposed method can be employed to assess cable-stayed structures including those made of other materials, e.g., concrete, timber or composites.

Structural Optimization for Non-Linear Behavior Using Equivalent Static Loads (II) - Structural Examples - (선형 등가정하중을 이용한 비선형 거동 구조물의 최적설계 (II) - 구조예제 -)

  • Park Ki-Jong;Park Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1061-1069
    • /
    • 2005
  • In part I of this papter Nonlinear Response Optimization using Equivalent Static Loads (NROESL) method/algorithm is developed to conduct optimization for nonlinear behavior structures. The method/algorithm is also verified to show its convergency and optimality. In this present paper, the NROESL algorithm is applied to several structural problems with geometric and/or material nonlinearity. Conventional optimization with sensitivity analysis using the finite difference method is also applied to the same examples. The results of the optimizations are compared. The proposed method is very efficient and derives good solutions.

The Static and Dynamic Analysis of a 45,000rpm Spindle for a Machine Tool and Evaluation of Its Stiffness (공작기계용 45,000rpm 주축의 정.동적 해석과 강성평가)

  • Kim, Dong-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.422-426
    • /
    • 2011
  • The spindle system is very important unit for the product accuracy in machine tools. A spindle system is designed by using the angular contact ceramic ball bearings, built-in motor, oil-air lubrication method and oil jacket cooling method. The static and dynamic analysis and stiffness evaluation of 45,000rpm spindle for machine tool has been investigated. Using a finite element method, we obtained some analyzed a static and dynamic characteristics of a spindle, such as natural frequency, harmonic analysis and we got the value of compliance through it. We evaluated stiffness by taking the inverse this value. A 45,000rpm spindle is successfully developed using the results.

Equivalent Continuum Modeling Methods for Flat Corrugated Panels (평판형 주름판넬에 대한 등가 연속체 모델링기법)

  • 이상윤;이우식
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.2
    • /
    • pp.43-50
    • /
    • 2000
  • The corrugated panels are the prime candidate structure for the floor, roof and wall of Korean high speed train. The equivalent continuum modeling approach panels can be used for the efficient design and evaluation of their structural characteristics. The equivalent continuum models, derived from the true complex corrugated panels, should have the same structural behavior as the original structures have. This paper briefly reviews three representative continuum modeling methods: the static analysis method and two plate-models based on modal analysis methods (MAM). These methods are evaluated through some numerical examples by comparing the natural frequencies and static deflections. It is observed that the plate-model based on Rayleigh-Ritz method seems to provide the best results when used in conjunction with the cantilever-type boundary conditions. The equivalent elastic constants of various corrugated panels, depending on the changes in their configurations, are tabulated for efficient use in structural design.

  • PDF

Error Analysis of Nonlinear Direct Spectrum Method to Various Earthquakes (다양한 지진에 따른 비선형 직접스펙트럼법의 오차해석)

  • 강병두;박진화;전대환;김재웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.53-60
    • /
    • 2002
  • It has been recognized that damage control must become a more explicit design consideration. In an effort to develop design methods based on performance it is clear that the evaluation of the inelastic response is required. The methods available to the design engineer today are nonlinear time history analyses, or monotonic static nonlinear analyses, or equivalent static analyses with simulated inelastic influences. Some codes proposed the capacity spectrum method based on the nonlinear static(pushover) analysis to determine earthquake-induced demand given the structure pushover curve. This procedure is conceptually simple but iterative and time consuming with some errors. This paper presents a nonlinear direct spectrum method to evaluate seismic Performance of structure, without iterative computations, given the structural initial elastic period and yield strength from the pushover analysis, especially for multi degree of freedom structures. The purpose of this paper is to investigate accuracy and confidence of this method from a point of view of various earthquakes and unloading stiffness degradation parameters.

  • PDF

Characteristic Analysis of Vector Controlled Linear Induction Motor Considering Static and Dynamic End Effect (정적 및 동적 단부효과를 고려한 선형 유도 전동기의 벡터제어 특성해석)

  • Kim, Dae-Kyong;Woo, Kyung-Il;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.315-317
    • /
    • 2000
  • Linear induction motor(LIM) have static and dynamic end effects due to its finite core length, so that per-phase impedances are asymmetric and the air gap flux distribution is distorted. So, this paper propose the d-q axis equivalent circuit and vector control method considering both static and dynamic end effects of the LIM. This vector control method consists of the slip frequency control, the time-invariant control and decoupling control. As a result, it is shown that the results of equivalent circuit method have a goof agreement with the results of finite element method.

  • PDF

Large deflections of variable-arc-length beams under uniform self weight: Analytical and experimental

  • Pulngern, Tawich;Halling, Marvin W.;Chucheepsakul, Somchai
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.413-423
    • /
    • 2005
  • This paper presents the solution of large static deflection due to uniformly distributed self weight and the critical or maximum applied uniform loading that a simply supported beam with variable-arc-length can resist. Two analytical approaches are presented and validated experimentally. The first approach is a finite-element discretization of the span length based on the variational formulation, which gives the solution of large static sag deflections for the stable equilibrium case. The second approach is the shooting method based on an elastica theory formulation. This method gives the results of the stable and unstable equilibrium configurations, and the critical uniform loading. Experimental studies were conducted to complement the analytical results for the stable equilibrium case. The measured large static configurations are found to be in good agreement with the two analytical approaches, and the critical uniform self weight obtained experimentally also shows good correlation with the shooting method.

Investigation on the failure type of tower segments under equivalent static wind loads

  • Li, Yue;Xie, Qiang;Yang, Zheng
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.161-171
    • /
    • 2022
  • This paper presents a failure type assessment curve method to judge the failure type of transmission tower segments. This novel method considers the equivalent static wind load characteristics and the transmission tower members' load-bearing capacities based on numerical simulations. This method can help judge the failure types according to the relative positions between the actual state points and the assessment curves of transmission tower segments. If the extended line of the actual state point intersects with the horizontal part's assessment curve, the segment would lose load-bearing capacity due to the diagonal members' failure. Another scenario occurs when the intersection point is in the oblique part, indicating that the broken main members have caused the tower segment to fail. The proposed method is verified by practical engineering case studies and static tests on the scaled tower segments.

Editing Depression Features in Static CAD Models Using Selective Volume Decomposition (선택적 볼륨분해를 이용한 정적 CAD 모델의 함몰특징형상 수정)

  • Woo, Yoon-Hwan;Kang, Sang-Wook
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.3
    • /
    • pp.178-186
    • /
    • 2011
  • Static CAD models are the CAD models that do not have feature information and modeling history. These static models are generated by translating CAD models in a specific CAD system into neutral formats such as STEP and IGES. When a CAD model is translated into a neutral format, its precious feature information such as feature parameters and modeling history is lost. Once the feature information is lost, the advantage of feature based modeling is not valid any longer, and modification for the model is purely dependent on geometric and topological manipulations. However, the capabilities of the existing methods to modify static CAD models are limited, Direct modification methods such as tweaking can only handle the modifications that do not involve topological changes. There was also an approach to modify static CAD model by using volume decomposition. However, this approach was also limited to modifications of protrusion features. To address this problem, we extend the volume decomposition approach to handle not only protrusion features but also depression features in a static CAD model. This method first generates the model that contains the volume of depression feature using the bounding box of a static CAD model. The difference between the model and the bounding box is selectively decomposed into so called the feature volume and the base volume. A modification of depression feature is achieved by manipulating the feature volume of the static CAD model.

Simultaneous Static Testing of A/D and D/A Converters Using a Built-in Structure

  • Kim, Incheol;Jang, Jaewon;Son, HyeonUk;Park, Jaeseok;Kang, Sungho
    • ETRI Journal
    • /
    • v.35 no.1
    • /
    • pp.109-119
    • /
    • 2013
  • Static testing of analog-to-digital (A/D) and digital-to-analog (D/A) converters becomes more difficult when they are embedded in a system on chip. Built-in self-test (BIST) reduces the need for external support for testing. This paper proposes a new static BIST structure for testing both A/D and D/A converters. By sharing test circuitry, the proposed BIST reduces the hardware overhead. Furthermore, test time can also be reduced using the simultaneous test strategy of the proposed BIST. The proposed method can be applied in various A/D and D/A converter resolutions and analog signal swing ranges. Simulation results are presented to validate the proposed method by showing how linearity errors are detected in different situations.