• Title/Summary/Keyword: static method

Search Result 4,702, Processing Time 0.029 seconds

On the Description of Constrained Static Behavior of Continuous System

  • Eun, Hee-Chang;Lee, Min-Su;Bae, Chung-Yeol
    • Architectural research
    • /
    • v.9 no.1
    • /
    • pp.39-45
    • /
    • 2007
  • The static behavior of continuous system is described by the elastic curve method or is approximately analyzed by a finite element method to be modeled as a discrete system. If a continuous system is constrained by linear constraints which restrict its static behavior, its behavior can be approximately described by the finite element method. It is not easy to describe the constrained behavior by continuous coordinate system. Starting from the generalized inverse method provided by Eun, Lee and Chung, this study is to expand the equation to the continuous systems, to perform the structural analysis of the beam under a uniform loading with interior spring supports, and to investigate the validity of the proposed method through applications.

The Analysis of Draw-bead Process by Using Static-explicit Finite Element Method (정적 외연적 유한요소법을 이용한 비드공정해석)

  • Jung, Dong-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.604-609
    • /
    • 2001
  • In the sheet metal forming process, the drawbead is used to control the flow of material during the forming process. The drawbead provides proper restraining force to the material and prevents defects such as wrinkling or breakage. For these reasons, many studies for designing the effective drawbead have been conducted. For the analysis, the numerical method called the static-explicit finite element method was used. The finite element analysis code for this method has been developed and applied to the drawbead process problems. In result, convergence problem and computation time due to large non-linearity in the existing numerical analysis methods were no longer a critical problem. Futhermore, this approach could treat the contact friction problem easily by applying very small time intervals. It is expected that various results from the numerical analysis will give very useful information for the design of tools in sheet metal forming process.

  • PDF

Static Tension Analysis Method for Floating Tire Breakwater (부 타이어 소파제의 정적 장력 해석 방법)

  • YOON Gil-Su;CHU Weon-Hyo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.1
    • /
    • pp.31-40
    • /
    • 1993
  • This paper deals with static tension analysis method for Floating Tire Breakwater(FTB). FTB can be used for the limited wave height. It is especially focused on Goodyear type FTB easily applied to the breakwater for the fisheries cultivating region. The numerical examples for FTB design procedure was reviewed. It is also studied the static analysis method of offshore catenary spread mooring system. The general calculation procedure for the tension versus excursion curves for the multi-line system using the basic catenary relationship was studied. Calculation results showed good agreement with some existing mooring results. To extend this mooring force calculating method to the floating fisheries caitivating cages, the strength of synthetic fiber was considered. This analysis method can be used to the estimation of the mooring force for the floating structures such as floating breakwaters and floating artificial reefs.

  • PDF

Identification of reinforced concrete beam-like structures subjected to distributed damage from experimental static measurements

  • Lakshmanan, N.;Raghuprasad, B.K.;Muthumani, K.;Gopalakrishnan, N.;Basu, D.
    • Computers and Concrete
    • /
    • v.5 no.1
    • /
    • pp.37-60
    • /
    • 2008
  • Structural health monitoring of existing infrastructure is currently an important field of research, where elaborate experimental programs and advanced analytical methods are used in identifying the current state of health of critical and important structures. The paper outlines two methods of system identification of beam-like reinforced concrete structures representing bridges, through static measurements, in a distributed damage scenario. The first one is similar to the stiffness method, re-cast and the second one to flexibility method. A least square error (LSE) based solution method is used for the estimation of flexural rigidities and damages of simply supported, cantilever and propped cantilever beam from the measured deformation values. The performance of both methods in the presence of measurement errors is demonstrated. An experiment on an un-symmetrically damaged simply supported reinforced concrete beam is used to validate the developed method. A method for damage prognosis is demonstrated using a generalized, indeterminate, propped cantilever beam.

Convergence studies on static and dynamic analysis of beams by using the U-transformation method and finite difference method

  • Yang, Y.;Cai, M.;Liu, J.K.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.4
    • /
    • pp.383-392
    • /
    • 2009
  • The static and dynamic analyses of simply supported beams are studied by using the U-transformation method and the finite difference method. When the beam is divided into the mesh of equal elements, the mesh may be treated as a periodic structure. After an equivalent cyclic periodic system is established, the difference governing equation for such an equivalent system can be uncoupled by applying the U-transformation. Therefore, a set of single-degree-of-freedom equations is formed. These equations can be used to obtain exact analytical solutions of the deflections, bending moments, buckling loads, natural frequencies and dynamic responses of the beam subjected to particular loads or excitations. When the number of elements approaches to infinity, the exact error expression and the exact convergence rates of the difference solutions are obtained. These exact results cannot be easily derived if other methods are used instead.

The static thrust calculation of a Hybrid-type LPM calculated by the Coenergy Method (자기(磁氣) 수반(隋伴)에너지를 이용한 Hybrid형 LPM의 정추력(定推力) 계산(計算))

  • Lee, Jae-Bong;Cho, Yun-Hyun;Shin, Pan-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.993-996
    • /
    • 1993
  • This paper presents the static thrust of a hybid-type LPM by coenergy method. First, the nonlinealities of the permanent magnet, the primary core and the secondary are interpolated by the cubic spline method. Then the equivalent magnetic circuit including airgap reluctance, which is a function of displacement, modelled by the permeance method is obtained. From the derivative of coenergy with displacement computed by Newton Raphson method, the static thrust is calculated at each displacement with certain exciting current.

  • PDF

Precise Static Contact Angle Measurements Using Pythagolas Rule (피타고라스 원리를 이용한 정적 접촉각 정밀 각도 측정방법)

  • Choi, Jin-Yeong;Kwon, Dong-Jun;Wang, Zuo-Jia;Shin, Pyeong-Su;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.15 no.2
    • /
    • pp.57-62
    • /
    • 2014
  • Pythagolas rule was used for investigation of static contact angle in particular figures. Static contact angle measurement was important to evaluate the wettability between solid and liquid. Optimum measurement method and standardization of calculation for static contact angle were investigated for practical application. Optimum diameter of droplet for static contact angle measurement was confirmed as 1 mm. Contact angle measurement using Pythagolas rule was also used to calculate advancing, receding angle and wettability of different surface condition. At last, it was concluded that the Pythagolas rule method was more accurate than general lineation method for static contact angle measurement.

Equivalent static wind load estimation in wind-resistant design of single-layer reticulated shells

  • Li, Yuan-Qi;Tamura, Yukio
    • Wind and Structures
    • /
    • v.8 no.6
    • /
    • pp.443-454
    • /
    • 2005
  • Wind loading is very important, even dominant in some cases, to large-span single-layer reticulated shells. At present, usually equivalent static methods based on quasi-steady assumption, as the same as the wind-resistant design of low-rise buildings, are used in the structural design. However, it is not easy to estimate a suitable equivalent static wind load so that the effects of fluctuating component of wind on the structural behaviors, especially on structural stability, can be well considered. In this paper, the effects of fluctuating component of wind load on the stability of a single-layer reticulated spherical shell model are investigated based on wind pressure distribution measured simultaneously in the wind tunnel. Several methods used to estimate the equivalent static wind load distribution for equivalent static wind-resistant design are reviewed. A new simple method from the stability point of view is presented to estimate the most unfavorable wind load distribution considering the effects of fluctuating component on the stability of shells. Finally, with comparisive analyses using different methods, the efficiency of the presented method for wind-resistant analysis of single-layer reticulated shells is established.

MULTI-OBJECTIVE OPTIMIZATION OF THE INNER REINFORCEMENT FOR A VEHICLE'S HOOD CONSIDERING STATIC STIFFNESS AND NATURAL FREQUENCY

  • Choi, S.H.;Kim, S.R.;Park, J.Y.;Han, S.Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.337-342
    • /
    • 2007
  • A multi-objective optimization technique was implemented to obtain optimal topologies of the inner reinforcement for a vehicle's hood simultaneously considering the static stiffness of bending and torsion and natural frequency. In addition, a smoothing scheme was used to suppress the checkerboard patterns in the ESO method. Two models with different curvature were chosen in order to investigate the effect of curvature on the static stiffness and natural frequency of the inner reinforcement. A scale factor was employed to properly reflect the effect of each objective function. From several combinations of weighting factors, a Pareto-optimal topology solution was obtained. As the weighting factor for the elastic strain efficiency went from 1 to 0, the optimal topologies transmitted from the optimal topology of a static stiffness problem to that of a natural frequency problem. It was also found that the higher curvature model had a larger static stiffness and natural frequency than the lower curvature model. From the results, it is concluded that the ESO method with a smoothing scheme was effectively applied to topology optimization of the inner reinforcement of a vehicle's hood.

Design of Static Output Feedback Controllers for Rollover Prevention (차량 전복 방지를 위한 정적 출력 피드백 제어기 설계)

  • Yim, Seongjin;Oh, Dongho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.20-28
    • /
    • 2014
  • This paper presents static output feedback LQ and $H_{\infty}$ controllers for rollover prevention. Linear quadratic static output feedback controllers have been proposed for rollover prevention in such a way to minimize the lateral acceleration and the roll angle. Rollover prevention capability can be enhanced if $H_{\infty}$ controller is designed. To avoid full-state measurement for feedback requirement or sensitiveness of an observer to nonlinear model error, static output feedback is adopted. To design static output feedback controllers, Kosut's method is adopted because it is simple to calculate. Differential braking and active anti-roll bar are adopted as actuators that generate yaw and roll moments, respectively. The proposed method is shown to be effective in preventing rollover through the simulations on nonlinear multi-body dynamic simulation software, CarSim.