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ABSTRACT-A multi-objective optimization technique was implemented to obtain optimal topologies of the inner
reinforcement for a vehicle’s hood simultaneously considering the static stiffness of bending and torsion and natural
frequency In addition, a smoothing scheme was used to suppress the checkerboard patterns in the ESO method. Two
models with different curvature were chosen in order to investigate the effect of curvature on the static stiffness and natural
frequency of the inner reinforcement. A scale factor was employed to properly reflect the effect of each objective function.
From several combinations of weighting factors, a Pareto-optimal topology solution was obtained. As the weighting factor
for the elastic strain efficiency went from 1 to 0, the optimal topologies transmitted from the optimal topology of a static
stiffness problem to that of a natural frequency problem. It was also found that the higher curvature model had a larger
static stiffness and natural frequency than the lower curvature model. From the results, it is concluded that the ESO
method with a smoothing scheme was effectively applied to topology optimization of the inner reinforcement of a
vehicle’s hood.
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1. INTRODUCTION

Shell and plate structures such as a vehicle’s hood and
trunk, of which the areas are very wide compared to their
thicknesses, are very weak in both transverse loading and
transverse vibration. Therefore, they have been used with
inner reinforcement attached beneath the structures. In
order to design inner reinforcement of the structures, a
topology optimization should be performed. The optimum
topology of reinforcement is very important in weight
reduction and fuel efficiency improvement of a vehicle.

In order to obtain an optimum design under the requir-
ed design conditions, the concept of optimum design
such as design sensitivity analysis should be implement-
ed in addition to estimations for static stiffness and natural
frequency (Lee et al., 2000). Topology optimization techni-
ques are used to obtain optimal topologies by determin-
ing which elements should remain inside the structure
under the required constraints. An important recent
development in this area was made by Bendsge and
Kikuchi (Bendsge and Kikuchi, 1988) who proposed the
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homogenization method, in which the structure is
represented by a model with micro voids and the
objective is to seek the optimal porosity of the porous
medium. Recently, evolutionary structural optimization
(ESO) has been proposed by Xie and Steven (1994; Chu
et al., 1996; Li et al., 2000), based on the concept of
gradually removing redundant elements to obtain an
optimal topology.

In this study, optimal topology of the inner reinforcement
for a vehicle’s hood simultaneously considering the static
stiffness of bending and torsion, and natural frequency
was obtained by the ESO method. To accomplish this, the
multi-objective design optimization technique was imple-
mented and a scale factor was employed to properly
reflect the effect of each objective function. A smoothing
scheme (Li et al., 2000) was applied to suppress the
checkerboard patterns during the procedure of topology
optimization. Also, two models with different curvature
were chosen in order to investigate the effect of curvature
on static stiffness and on the natural frequency of the
inner reinforcement.
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2. MULTI-OBJECTIVE DESIGN
OPTIMIZATION

Multi-objective design optimization is a design method
used to simultaneously maximize more than one objec-
tive function. In this case, weighting factors can be intro-
duced to reflect the importance of different design criteria
such as static stiffness and natural frequency. Using
several combinations of weighting factors, different trade-
off strategies result in different topologies. Each of these
topologies represents a Pareto-optimal solution (Li ef al.,
2000). Therefore, a designer can select an optimal solution
from the Pareto-optimal solution dependent on the level
of importance.

2.1. Multi-objective Sensitivity Number for Static Stiffness
The sensitivity number for static stiffness (Chu et al.,
1996) is generally defined by Equation (1). Equation (1)
calculates the change in the elastic strain energy in a
structure when the i® element is removed. Therefore, an
optimal topology of a structure having the maximum
static stiffness is obtained by removing gradually the
elements which have the lowest sensitivity numbers for
static stiffness. The multi-objective sensitivity number
for static stiffness can be obtained by Equation (2) by
imposing the weighting factors on the sensitivity numbers
for bending and torsion in order to reflect the importance
of bending and torsion, respectively.
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In these equations, ¢ is the strain energy of each
element, {u'} is the displacement vector of the i-th
element, [K'] is the stiffness matrix of the i-th element,
A, and A, are weighting factors for bending and torsion,
respectively, o} is the strain energy of each element due
to bending, and ¢ is the strain energy of each element
due to torsion.

Since the obtained multi-objective sensitivity number
for static stiffness should be combined with the sensi-
tivity number for natural frequency, it is normalized by
Equation (3),
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where, ¢, is the sensitivity number for static stiffness,

and O,my and &,mn are the maximum and minimum

sensitivity numbers for static stiffness, respectively.

2.2. Sensitivity Number for Natural Frequency
The sensitivity number for natural frequency is defined
by Equation (4). Equation (4) estimates the difference

between the kinetic energy and elastic strain energy in a
structure when the i® element is removed (Sigmund and
Petersson, 1998). An increase or decrease in natural
frequency can be accomplished by removing the elements
having the highest or the lowest sensitivity numbers in
the ESO. In general, the natural frequency of a structure
is designed to be as large as possible because it is helpful
to avoid resonance in a structure. Therefore, an optimal
topology of a structure having the maximum natural fre-
quency is obtained by gradually removing the elements
which have the highest sensitivity numbers for natural
frequency. In order to combine sensitivity numbers for
natural frequency with those for static stiffness, the
sensitivity numbers can be normalized by the following
Equation (5),
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where ¢of; is the sensitivity number for natural frequency,
m, is the mass of the i-th element, {u{} denotes the
eigenvector corresponding to @, @ is the i-th natural
frequency, [M’] is the mass matrix, [K°] is the stiffness
matrix, and s and @, are the maximum and
minimum sensitivity numbers for natural frequency, respec-
tively.

2.3. Multi-objective Sensitivity Number for Static Stiffness
and Natural Frequency

The multi-objective sensitivity number for both static
stiffness and natural frequency is obtained by the follow-
ing Equation (6) by imposing the weighting factors on
sensitivity numbers for static stiffness and natural
frequency in order to reflect the importance of static
stiffness and natural frequency, respectively.

ol = 2B 25( 2] ©)

In Equation 6, sfs and sfd are scale factors, which are
employed to make the averages of the normalized
sensitivity number for static stiffness, ., and the
normalized sensitivity number of natural frequency, G,
equal. o, is the multi-objective sensitivity number of
each element.

2.4. Removal Line

Optimal topology based on ESO is obtained by gradually
removing the elements having the lowest multi-objective
sensitivity numbers for static stiffness and natural frequ-
ency. In order to determine the elements to be removed,
the removal line should be established. The normalized
multi-objective sensitivity number for static stiffness and
natural frequency lies between 0 and 1. Since the weight-
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ing factors, A7 and A7, and the scale factors, sfs and sfd,
are imposed to the normalized multi-objective sensitivity
number for static stiffness and natural frequency, the
values become greater than 0 and smaller than 1. This
creates difficulty in establishing the removal line, so
Equation (6) must be normalized by Equation (7) once
again,

Olypi — Olimin

G = @ynimax — mimin ™
where o, is the normalized multi-objective sensi-tivity
number for static stiffness and natural frequency and
e and Oy, are the maximum and minimum nor-
malized multi-objective sensitivity numbers for natural
frequency, respectively.

The removal line can be established as Equation (8)
where the threshold rate, Aq, is a value obtained
empirically.

RL = aNmimin X Aa (8)

The elements for which the normalized multiobjective
sensitivity number for static stiffness and natural frequ-
ency, Qv , are less than or equal to RL are to be remov-
ed. This condition can be expressed by the following
Equation (9).

i RL ©

This process is iterated until the obtained topology
satisfies the restricted conditions of mass, yield stress,
and deflection.

3. SUPPRESSION OF CHECKERBOARD
PATTERNS

Checkerboard patterns are quite common in various finite
element-based structural optimization techniques. As
pointed out in previous research (Sigmund and Petersson,
1998), four-node element meshes appear to be locally
stiffer than any real material. Shapes and topologies pro-
duced with checkerboard patterns may be unacceptable
for practical applications. For this reason, the suppression
of the checkerboard pattern has recently attracted consi-
derable attention. To correct this, an intuitive smoothing
technique (Li et al., 2000) was introduced which consists
of two basic steps:

(1) Calculate the sensitivity number at each node by
using a volumetric weighted average of the sensi-
tivity number for each element connected to this
node.

(2) Calculate the new sensitivity number for an element
by calculating the average of the nodal sensitivity
numbers for that element.

The weighting factors for each element are shown in

Figure 1, and were classified into the first and the second

order schemes due to the number of layers surrounding
the center element. This is viewed as a first order smooth-
ing technique. For a regular rectangular mesh, the
efficiency of the smoothed element is calculated from
itself and those of 8 surrounding elements in the first
surrounding layer shown in Figure 1(a). When necessary,
a second order smoothing approach may be applied, in
which the smoothed efficiency factors are further
smoothed. For a rectangular mesh, the efficiency of the
smoothed element is calculated from itself and those of
24 surrounding elements in the first and second layers
shown in Figure 1(b).

A new sensitivity number for the center element when
applying the smoothing technique can be expressed by

1 4 6 4 1

(a) First order scheme (b) Second order scheme

Figure 1. Filter parameter for the checkerboard sup-
pression.
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Figure 2. Flowchart for a multi-objective topology
optimization.
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Equation (10), and the following requirement for the sum
of the weighting factors, Equation (11), should be satis-
fied.

o = (Zm: w;V;ch;,mi]/[i w,-V,-J (10)

i=1

S =l (11)

Here, o is the multi-objective sensitivity number by
suppression, w; represents the filter parameter, V; denotes
the connecting elemental volume, and m is the number of
connected elements.

It is clear that the second order scheme may provide a
better correction to these numerical instabilities than the
first order scheme. In this study, the second order scheme
was implemented.

4. APPLICATION EXAMPLES

4.1. Multi-objective Topology Optimization

A flowchart for a multi-objective topology optimization
is shown in Figure 2. In order to investigate the effect of
curvature of a vehicle’s hood on an optimal topology,
multi-objective topology optimizations were performed
for two cases: (1) a hood with a certain curvature in the y-
z plane as shown in Figure 3(c) (Model 1), and (2) a hood
with a larger curvature than that of Model 1 in the y-z
plane as shown in Figure 3(d) (Model 2). A load of 10 N
each was applied at the both ends of the front edge and
the center of the hood in order to estimate the static
stiffness of bending and torsion, but there was no load to
estimate the natural frequency. The center on the front
edge and both ends on the back edge were fixed as
constraints.

The five weighting factors considered were 0, 0.25,
0.5,0.75, and 1 in order to reflect the importance of as the
static stiffness and natural frequency, respectively. The
dimensions and material properties of a vehicle’s hood
shown in Figure 3(a) are as follows: length (x-axis)=
1.122 m, width (z-axis)=1.4 m, Young’s modulus=210
GPa, Poisson’s ratio=0.3, density=7,800 kg/m’, and thick-
ness=3 mm. The final mass was restricted as 50% of the
initial design (original model). The dimensions and the
finite element modeling for Model 1 are shown in Figure
3. The overall design region of Model 1 is shown in
Figure 3(a) and the finite element modeling in the x-y
plane and the y-z plane are shown in Figure 3(b) and
Figure 3(c), respectively. The dimensions and the finite
element modeling for Model 2 are shown in Figure 3(d).
A Pareto-optimal topology solution when the weighting
factors for the bending and torsion, A; and A;, were 0.5
for Model 1 and Model 2 due to several combinations of
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Figure 3. Finite element modeling of vehicle's hood.

weighting factors is shown in Figure 4. It was verified
that as the weighting factor for natural frequency, A
went from O to 1 for Model 1 and Model 2, the optimal
topologies transmitted from the optimal topology of the
static stiffness problem to that of the natural frequency
problem. From the Pareto-optimal topology solution
shown in Figures 4(a) and 4(b), it is known that the
topology of the inner reinforcement of a vehicle’s hood
used currently is close to that when the weighting factor
for the static stiffness, Ai'=1 or 0.75. The comparison of
the first natural frequency and the maximum displace-
ment for Model 1 and Model 2 is shown in Table 1 and
Table 2. From the comparison of Table 1, as the weight-
ing factor for the static stiffness, A7, increased, the
maximum displacement decreased for Model 1 and
Model 2. Furthermore, from the comparison of Table 2,
As the weighting factor for the static stiffness, A7,
increased, the maximum natural frequency decreased for
Model 1 and Model 2. From Figure 4(c), 4(d), and 4(e), it
was found that the effect of torsion in static stiffness
disappeared if the weighting factor for static stiffness,
A7, was smaller than 0.5.
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Figure 4. Pareto-optimal topology solution for Model 1
and Model 2.

Therefore, it was verified that the Pareto-optimal
topology solution can be reasonably obtained due to the
importance of static stiffness and natural frequency. Also,
it was shown that Model 2 has a larger static stiffness and

Table 1. Comparison of the maximum displacements (m)
for Model 1 and Model 2.

Weighting factor Model 1 Model 2
A=l 1.501e-4 1.078e-5
Ay =0.75 1.792e-4 6.122e-5
A7 =0.5 3.368¢-4 1.122e-4
A7 =025 3.937e-4 1.316e-4
A =0 - -

Table 2. Comparison of the natural frequency (Hz) for
Model 1 and Model 2.

Weighting factor Model 1 Model 2
A =1 9.544 11.108
A7 =0.75 9.672 12.353
AT =0.5 11.204 12.875
A7 =0.25 13.548 13.816
AT =0 13.668 14.283

more natural frequency than those of Model 1 from Table
1 and 2. From the above result, it was found that a
vehicle’s hood with the higher curvature is advantageous
to achieve the maximum static stiffness and natural
frequency.

5. CONCLUSIONS

In this study, based on the ESO method implementing the
suppression checkerboard scheme, topology optimization
of the inner reinforcement for a vehicle’s hood consider-
ing static stiffness of bending and torsion as well as
natural frequency was performed through multi-objective
optimization. A Pareto-optimal topology solution was
reasonably obtained due to the importance level of static
stiffness and natural frequency. It was also found that
models with higher curvature have larger static stiffness
and natural frequency than the lower curvature models.
Moreover, it was found that hoods of vehicles with the
higher curvatures are advantageous for maximum static
stiffness and natural frequency. Therefore, it was con-
cluded that the ESO method with a smoothing scheme
can be effectively applied to topology optimization of the
inner reinforcement of a vehicle’s hood.
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