• Title/Summary/Keyword: state-feedback control

Search Result 1,065, Processing Time 0.027 seconds

Design of Robust Controller for Systems with Time Delay (지연시간을 갖는 계통에 대한 강인한 제어기 설계)

  • 박귀태;이기상;김성호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.9
    • /
    • pp.997-1005
    • /
    • 1990
  • Integral Error and State Feedback (IESF) controller which incorporates state feedback as a modern control scheme and integral action as a classical control scheme has better performance than that of conventional PID controller in linear time invariant system. But the structure of the IESF controller requires all the state variables of the system and is applicable only to pole assignable linear time invariant systems without time delay. Many industrial processes have large time delay and it is impossible to directly apply IESF control scheme to those processes. In this paper, a new controller structure, Modified Integral Error and State Feedback (MIESF) has been suggested in order to effectively control processes having time delay and its performance has been analyzed and its effectiveness has also been confirmed. As the proposed controller uses output feedback scheme based on integral error and state feedback (IESF) method, it can be simply designed by pole assignment algorithm irrespective of the order of the process. The MIESF controller can follow setpoint changes without overshoot. It is robuster than conventional Smith-Predictor plus PI(D) controller in case of occurring time delay mismatch and extra parameter mismatches between the process and the model. It can enhance control performance by intentional time delay mismatch.

  • PDF

CONTROLLER DESIGN FOR A ROBOTIC MANIPULATOR DELAYED FEEDBACK (Delayed Feedback을 이용한 로보트 제어기의 설계)

  • ;Chyung, Dong H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.145-148
    • /
    • 1990
  • In this paper, the problem of designing a feedback controller for a robotic manipulator, which is activated by a D.C. motor through a gear train and a flexible shaft or chain, is considered. When the response of the closed loop control system is relatively slow, a satisfactory controller may be designed as a PID controller. As the speed of the control system increases, however, the spring effect of the linkage becomes profound, and as a result, the transient response exhibits a substantial oscillation. To eliminate this oscillation, it is necessary to design the controller based on at least a fourth order system model. This, in turn, requires the feedback of the entire state variables. In practice, however, only the position of the manipulator and the velocity of the motor are readily measurable. The state variable reconstruction method or a state observer cannot be used because of the system nonlinearities such as the Coulomb frictions. In this study, an alternative controller, which is based on delayed feedback of the output variable only, is proposed, and a successful delayed feedback controller is designed and implemented on an actual experimental manipulator.

  • PDF

Robust $H_{\infty}$ Control for Bilinear Systems via State Feedback (상태 피드백에 의한 쌍일차 계통의 강인 $H_{\infty}$ 제어)

  • Kim, Young-Joong;Kim, Beom-Soo;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2037-2039
    • /
    • 2002
  • This paper focuses on robust $H_{\infty}$ control for bilinear systems with time-varying parameter uncertainties via state feedback. The suitable robustly stabilizing feedback control law can be constructed in term of solution to a state variable x-dependent quadratic Riccati equation using successive approximation technique. Also, the state feedback control law robustly stabilizes the plant and guarantees a robust $H_{\infty}$ performance for the closed-loop bilinear system with parameter uncertainties and exogenous disturbance.

  • PDF

Output Feedback Semi-Global Stabilization for Input-Affine Nonlinear Systems

  • Hyungbo Shim;Seo, Jin-Heon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.104-109
    • /
    • 2000
  • In this paper, the output feedback stabilizing problem is solved using any given state feedback control law. Compared to the linear systems is not so straightforward for nonlinear systems. We briefly explain the intrinsic obstructions for this problem and provide new output feedback scheme which achieves the semi-global stabilization with the high-gain state observer. THe overall uniform observability of the plant. Therefore, the result can be regarded as an extension of the separation principle for linear systems in some aspect.

  • PDF

Adaptive State Feedback Control for Nonlinear Rotary Inverted Pendulum System using Similarity Transformation Method: Implementation of Real-Time Experiment (유사변환기법을 이용한 비선형 회전식 역진자의 적응형 상태궤환 제어시스템: 실시간 실험 구현)

  • Cho, Hyun-Cheol;Lee, Young-Jin;Lee, Kwon-Soon;Koo, Kyung-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.130-135
    • /
    • 2009
  • In recent years, researches on rotary inverted pendulum control systems have been significantly focused due their highly nonlinear dynamics and complicated geometric structures. This paper presents a novel control approach for such systems by means of similarity transformation theory. At first, we represent nonlinear system dynamics to the controllability-formed state space model including a time-varying parameter vector. We establish the state-feedback control configuration based on the transformed model and derive an adaptive control law for adjusting desired characteristic equation. Numerical analysis is achieved to evaluate our control method and demonstrate its superiority by comparing it to the traditional control strategy. Furthermore, real-time control experiment is carried out to test its practical reliability.

Adaptive States Feedback Control of Unknown Dynamics Systems Using Support Vector Machines

  • Wang, Fa-Guang;Kim, Min-Chan;Park, Seung-Kyu;Kwak, Gun-Pyong
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.310-314
    • /
    • 2008
  • This paper proposes a very novel method which makes it possible that state feedback controller can be designed for unknown dynamic system with measurable states. This novel method uses the support vector machines (SVM) with its function approximation property. It works together with RLS (Recursive least-squares) algorithm. The RLS algorithm is used for the identification of input-output relationship. A virtual state space representation is derived from the relationship and the SVM makes the relationship between actual states and virtual states. A state feedback controller can be designed based on the virtual system and the SVM makes the controller with actual states. The results of this paper can give many opportunities that the state feedback control can be applied for unknown dynamic systems.

Receding Horizon Finite Memory Controls for Output Feedback Controls of Discrete-Time State Space Models

  • Han, Soo-Hee;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1896-1900
    • /
    • 2003
  • In this paper, a new type of output feedback control, called a receding horizon finite memory control (RHFMC), is proposed for stochastic discrete-time state space systems. Constraints such as linearity and finite memory structure with respect to an input and an output, and unbiasedness from the optimal state feedback control are required in advance. The proposed RHFMC is chosen to minimize an optimal criterion with these constraints. The RHFMC is obtained in an explicit closed form using the output and input information on the recent time interval. It is shown that the RHFMC consists of a receding horizon control and an FIR filter. The stability of the RHFMC is investigated for stochastic systems.

  • PDF

Time delay control with state feedback for azimuth motion of the frictionless positioning device

  • Jeong, Ho-Seop;Lee, Chong-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.385-388
    • /
    • 1996
  • A time delay controller with state feedback is proposed for azimuth motion control of the frictionless positioning device which is subject to the variations of inertia in the presence of measurement noise. The time delay controller, which is combined with a low-pass filter to attenuate the effect of measurement noise, ensures the asymptotic stability of the closed loop system. It is found that the low-pass filter tends to increase the robustness in the design of time delay controller as well as the gain and phase margins of the closed loop system. Numerical and experimental results support that the proposed controller guarantees a good tracking performance irrespective of the variation of inertia and the presence of measurement noise.

  • PDF

A Distributed Constrained Power Control with Variable State Feedback Gain in CDMA Cellular Systems (가변 상태궤환 이득을 이용한 CDMA 셀룰라 시스템의 제한된 분산전력제어)

  • 이무영;오도창;권우현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.1065-1070
    • /
    • 2003
  • We present a power control with variable state feedback gain (VFPC) to improve outage convergence rate of distributed constrained power control. The variable state feedback gain includes the information of the desired SIR changes and must be a decreasing sequence for the convergence. The proof of the convergence is given. The proposed algorithm can improve the outage convergence rate and SIR (Signal to Interference Ratio) response at transient as well as at steady state. The simulation results are given to demonstrate the feasibility of the proposed scheme.

Adaptive control of overmodeled linear time-invariant discrete systems (과모델된 선형 시불변 이산 시간 시스템의 적응 제어법칙)

  • Yang, Hyun-Suk;Lee, Ho-Shin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.2
    • /
    • pp.67-72
    • /
    • 1996
  • This paper presents a parameter adaptive control law that stabilizes and asymptotically regulates any single-input, linear time-invariant, controllable and observable, discrete-time system when only the upper bounds on the order of the system is given. The algorithm presented in this paper comprises basically a nonlinear state feedback law which is represented by functions of the state vector in the controllable subspace of the model, an adaptive identifier of plant parameters which uses inputs and outputs of a certain length, and an adaptive law for feedback gain adjustment. A new psedu-inverse algorithm is used for the adaptive feedback gain adjustment rather than a least-square algorithm. The proposed feedback law results in not only uniform boundedness of the state vector to zero. The superiority of the proposed algorithm over other algorithms is shown through some examples.

  • PDF