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Output Feedback Semi-Global Stabilization for input-Afﬁne
Nonlinear Systems

Hyungbo Shim and Jin Heon Seo

Abstract : In this paper, the output feedback stabilizing problem is solved using any given state feedback control law. Compared to the
linear systems for which any combination of a state feedback control law and a state observer solves the problem, the output feedback
stabilizing problem is not so straightforward for nonlinear systems. We briefly explain the intrinsic obstructions for this problem
and provide new output feedback scheme which achieves the semi-global stabilization with the high-gain state observer. The overali
controller is explicitly given and the stability is analyzed. Our result only assumes the asymptotic stabilizability and the completely
uniform observability of the plant. Therefore, the result can be regarded as an extension of the separation principle for linear systems

in some aspect.
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L. Introduction
Consider a single-input single-output nonlinear system,

&= fel€) + ge(E)u (la)
y = he(8) (1b)

where § € R™ is the states, f¢ and g are smooth vector fields,
and h¢ is a smooth function. It is assumed that f¢(0}) = 0 and
}15(0) =0.

In the linear control theory, stabilizability and detectability
of the system guarantee the existence of output feedback con-
troller, i.e., any pole-placement state feedback and any Luen-
berger observer can be combined to construct an output feed-
back controller (separation principle). However, for nonlinear
control, it has been understood that such a desirable property
does not hold in general. Especially, a counterexample has
been presented in | 1] which shows that global stabilizability and
global observability are not sufficient for global output feedback
stabilization. As a consequence, succeeding research activities
have been devoted into two fields. One of them is imposing
additional conditions on the system for global output feedback
stabilization, for example, differential geometric conditions on
the system structure [2], or an existence assumption of a cer-
tain Lyapunov function [3]. The other approach is focused
on the semi-global output feedback stabilization instead of the
global stabilization [4][5]. In particular, Teel and Praly [6], [7]
constructed a semi-global output feedback stabilizing controller
only under global stabilizability and observability. For the dis-
cussion to be clearer, some definitions are provided here.

Definition 1: An equilibrium point £ = 0 of (1) is globally
state (respectively, output) feedback stabilizable if there exists a
feedback control law using the information of the state £ (re-
spectively, the output y) such that the closed-loop system is
globally asymptotically stable, more precisely, the region of at-
traction is the whole space of R".

Definition 2: An equilibrium point £ = 0 of (1) is semi-
globally state (respectively, output) feedback stabilizable if, for
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each compact set JC which is a neighborhood of the origin, there
exists a feedback control law using the information of the state
& (respectively, the output y) such that the region of attraction
contains X.

Definition 3: An equilibrium point { = 0 of (1) is locally
state (respectively, output) feedback stabilizable if there exists a
feedback control law using the information of the state £ (re-
spectively, the output y) such that the closed-loop system is
locally asymptotically stable, more precisely, there is an open
region of attraction containing the origin.

However, the aformentioned results [6], [7] used the ‘dy-
namic extension’ technique and the high-gain observer [8]
which estimates the derivatives of the output y. As a result,
the order of controller is greater than that of the plant in gen-
eral, which is unnecessary in the case of linear output feedback
stabilization.

To establish nonlinear output feedback stabilization, which
is a natural extension of linear one, some crucial properties of
linear version should be pointed out.

P1) Only stabilizability and observability are sufficient for
output feedback stabilization. No more conditions are needed.

P2) If the system is observable when w = 0, it is also ob-
servable for every known w.

P3) The order of observer is the same as that of the plant.
Thus, the order of output feedback controller is n.

P4) The procedures to design output feedback controller is
completely separated, that is, any state feedback controller and
any observer can be combined.

From now on, three aspects of output feedback are presented.
These give some motivation and justification of the treatment in
this paper.

1. Nonlinear Observers

Global nonlinear observers have been actively studied in the
literature. Most of them require some additional conditions as
well as global observability, e.g., linearity up to output injection
[9], {2], or input boundedness and restriction of certain nonlin-
ear growth [10}, [11].

The fact that, in nonlinear systems, the observability can be
destroyed by an input « {12, p.415], is another obstacle for gen-
eral construction of observer. In order to construct an output
feedback controller by designing state feedback controller and
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observer separately as in (P), some strong notion of observabil-
ity independent of a state feedback controller as stated in (P) is
required. Gauthier and Bornard [13] showed that a necessary
and sufficient condition for the system (1) to be observable for
any input is that (1) is diffeomorphic to a system of the form

= f(x)+ g(z)u (2a)
where
Ty g1(z1)
T3 92(15171‘2)
flz)y=| g(z) = : (2c)
Tn gn—1($17"’,l‘n—1)
'l[)(.’l]) 911(101,%27"' ,.’L‘n)

which property they called completely uniform observability.
Although Teel and Praly [6] defined completely uniform ob-
servability in a slightly different way using the derivatives of
input and output, throughout this paper it is defined as follows.

Definition 4: The system (1) is completely uniformly ob-
servable if (1) is diffeomorphic to (2) on R™.

In [11] a high gain observer is also constructed for the sys-
tern of the form (2), i.e., for a completely uniformly observable
system. Since it fits the purpose stated in (P) and has useful
properties for output feedback, we will utilize the observer of
[11] in this paper. Although the observer [11] requires that the
input % is uniformly bounded and that the vector fields f and
g are globally Lipschitz (which is in opposition to (P)), we will
eliminate them by saturating the input and using the semi-global
approach.

2. Feedback Control using Estimated States
Another key obstruction for global output feedback is ‘finite
escape time’ phenomenon which is well discussed in [1].
Suppose a system

i‘1=1‘2
. 3
To =Ty +u

y=1mo

which is globally state feedback stabilizable with u(z) =
—z1 — x2 — x5, and completely uniformly observable. Sup-
pose also that a global observer is constructed which estimates
the true state asymptotically, that is,

u(z(t)) = u(z(t)) as t — oco. 3

Hence, the system with output feedback is
(I','L =2 (4a)

iy = a5 +u(®) = %13 + [%zg + u(2)). (4b)

Though the global observer guarantees the convergence of
(3), it takes some time for the control value u(&(#)) to converge
to the true control u(z(t)). During that time interval, some state
may escape to infinity. For the example in (4) with z1(0) =
0, z2(0) = 10 and £(0) = 0, the state z2 goes to infinity
within 0.01 seconds unless the second term of (4b) ([$z3(t) +
u(&(t))]) becomes negative during that time. This facts shows

that, for the output feedback stabilization, the convergence rate
of the observer should be sufficiently fast.

However, at this point, there are two obstacles. The first
one is the fact that no matter how fast the convergence rate
of observer is, there always exists an initial condition of z»
whose trajectory blows up in finite time. Indeed, for a sys-
tem ¢ = 12° the solution z(t) from z(0) = zo > 0 blows
upatt = Tlg which can be made arbitrarily small by increas-
ing the initial 2o [1]. The semi-global approach is now appeal-
ing since it restricts possible initial conditions, which is practi-
cally reasonable. The second obstacle is the so-called ‘peaking
phenomenon’ [14] which is generally inevitable when the con-
vergence of observer is forced to be sufficiently fast. For fast
convergence rate, most observers use high-gain, or place their
poles far left. This ensures fast convergence but may generate
initial peaking, i.e. large mismatched value between u(x(t))
and u(&(t)) for the short initial period. This mismatching again
may reduce the escape time of the system, thus, the observer
needs to converge faster. A remedy for this vicious cycle is sat-
urating the value of control u(&), which is based on the idea of

[4].

3. State Feedback Stabilization for Completely Uniformly
Observable Systems

As pointed out in the above discussion, the approach in this
paper is based on the completely uniform observability. To con-
struct an output feedback controller, globally stabilizing state
feedback is indispensable for the system (2). Unfortunately, in
spite of global stabilizability of (2) there has been no general
procedure for such controller in the literature. Nevertheless,
several well-known methods can be used for the state feedback.
Feedback linearizable systems, or partially linearizable systems
with 1SS-zero dynamics, is globally stabilizable [2], thus, can
be used in the proposed approach if it is completely uniformly
observable. A system with global relative degree of order n
also satisfies Assumption 1. If a control Lyapunov function is
known, Artstein and Sontag’s control can be used if the small
control property holds [9]. In fact, since the semi-global stabi-
lization rather than global one is dealt with, only semi-global
state feedback results are required in the above discussion, as
pointed out in [6].

In summary, by using the idea of input saturation [5], a non-
linear observer is constructed and finite escape time is avoided
in this paper. The main difference between our result and that
of [6] is the order of controller. For example, even for a simple
linear system

z'1=$2+u
izzm]

Yy =1,

the strategy of their paper gives a controller of order 4. This is
mainly due to the ‘dynamic extension’ used in their paper. For
this example, the dynamic extension technique causes order 2 in
addition to the order 2 of the observer. On the other hand, this
paper still yields a controller of order 2 which is the same or-
der as the plant. This is achieved by incorporating the observer
proposed in [11] instead of the dynamic extension.
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II. Main Results
In this section, an output feedback scheme is presented and
analyzed. A sufficient condition for the proposed scheme is just
the following.
Assumption 1: The system (1) is globally state feedback
stabilizable' and completely uniformly observable.

1. Design Steps

Consider the system (2).

Step 1. (State Feedback Stabilization)

Choose a compact set K € R” in which the initial state z(0)
can be located. Design a C* state feedback control a(z) with a
continuously differentiable Lyapunov function V' (z), such that

1. K CQ:={zx:V(z) < c} fora positive constant c.

2. Q@ :={x:V(z) < c+ 4§} isconnected and compact.
in which 4 is a posivite constant.

3. V=L;V+LyVa=~W(x)where W(z) is positive

definite function (W (0) = 0) on ;.
The existence of such « and V' (z) is guaranteed by the global
state feedback stabilizability. Practically these can be found
by the existing methods discussed at section I-3. Also, de-
fine @y = {z : V(z) < c+ ¢} for future use. Hence,
KcCQocyca.

Remark 1: This step need not be performed for the form of
(2), i.e. in z-coordinates. By the global state feedback stabiliz-
ability of the plant (1), the globally stabilizing a (£) and Ve (&)
for (1) can be found. Then, they can be transformed to a(z)
and V' (x), since (1) is diffeomorphic to (2) by the completely
uniform observability.

Step 2. (Preparation for Semi-global Output Feedback)

Construct the control u such that

()
L'V

u="U -sat ( ) , U > max |a(z)|. (5)
z€Q

Next, modify f(z) and g(z) outside the region ©; to be glob-

ally Lipschitz when they are not, and denote them by f(L)

and §(x), respectively. More precisely, find® globally Lipschitz

¥(x) and §s(z1,- - ,:), 1 < i < nsuch that ¥(z) = ¥(z)

and g;(z) = gi(xz) when & € Q. Then,

&= f(z)+g(x)u. y=Cz (6)

describes the dynamics of the plant in the region of interest £2;.
Step 3. (Observer Construction)
Suppose the observer's initial state £(0) is located in {2o.
Construct the observer as

= f(@&)+§layu— S, C'(Ck —y) %)
where Sy satisfies’
0=—0Ss — A'Sp — SsA+C'C, (8)
where A is such that (4);; = é;j—1andC = [1,--- ,0].

Now, there exists a = such that for any 8 > 6", the states of
the closed-loop system is asymptotically stable on €2o.

UIn fact, semi-global state feedback stabilizability is necessary rather
than the global state feedback stabilizability.

2This procedure is termed as ‘Lipschitz extension’ in [15], [16]. Prac-
tical methods finding the suitable extension can be found there.

3When # > 0, the existence of such solution Sy, which is positive
definite and symmetric. is followed by the observability of A and (.

2. Analysis

In this subsection, analyses of stability and convergence are
presented for the output feedback scheme of last subsection.
Firstly, the following lemma recalls the result of [11].

Lemma 1: Consider the plant (6) and the observer (7). With
the saturated input u in (5), there exists a constant 65 > 1 such
that for any 6 > 6, the observer (7) guarantees

. 0 ...
[£(t) — z(t)] < K(8) eXP(—?*)ISE(O) —-z(0)]. O
Moreover, for a fixed 7 > 0,

K(6) exp(—gr) -0 as # — oo. (10)

Proof: The first part of the claim follows from the work of

[11, Theorem 3], since the system is completely uniformly ob-

servable (by the form (2)), f and ¢ are globally Lipschitz, and
the input (&) is uniformly bounded, i.e.,

lu(@(8))] <U

for all ¢, by (5). The inequality (10) is also an easy consequence
of their work, but is unclear in [11].

Let S, denote the solution of (8) with # = 1, which is sym-
metric and positive definite matrix. Then, from [11],

1
(So)i; = (S1):; grmg=1-
Define e := & — i, (; := e; /8" and ||z||s := (z'Sz)%. From
these definitions, the following useful relations can be obtained.
For8 > 1,

llells, = VoIIClls, (an
VA (SOHIKCI < 1€llsy < VA (SHIC]] (12)
e17r
1 e2gs 1
é;IIEII <6l = : < gllell (13)
engw

where Anr(S1) and A (S1) denote the maximum and mini-
mum eigenvalues of S, respectively.
Now evaluating the derivative of ||e]|s, . (See [11] for details.)

d 6
EHEHSQ < _§H€ S +N|le”59

= ~Llellse + (¥ = § ) e

where N is a positive constant independent of 6. Hence, for
8 > 0; = max{1,6N},

Se

6
le(®)llss < exp(=30)lle(O)lls,-
Using the relations (11) — (13),

Am(S1)
Am(sl)

leco)ll < 6" exp(~21)l(0)]

that is, K(§) = 8™/ %2—1‘—; in (9), and hence (10) follows.

This completes the proof. |



Transaction on Control, Automation and Systems Engineering Vol. 2, No. 2, June, 2000 107

Next, define the deviation of the control as
t(t
Au(z(t),#(t)) := U - sat (ﬂ“g—g)—)) — alz(t).

Then we can claim the following lemma.

Lemma 2: Consider the observer (7) with #(0) € Qo. For
any given 7 > 0 and € > 0, there exists 85 > 0 such that, for
any 8 > 65,

Au(t)] < cexp(—o(t =7, t27 (14

ifz(t) € Q= {z: V() <c+ 5} forallt, withz(0) € Qo.
Proof: Define
do:= sup |£(0) — x(0)|. (15)

= (0}€Qg
#(0)€QQ

And define
D:=inf|lg —z| for "ze{c:V(z)<c+ g}
Y# € {#: V(&) > c+ 8}

Clearly, D > 0. (If not, i.e. D = 0, then there are an = such
that V() < ¢ + £ and a sequence {&:} such that & — = and
V(%) > ¢+ 4. Since V' is continuous, V(#;) — V (z), which
is a contradiction because V' (z;) — V(z) > %.)

Now, it follows from Lemma | that there exists a 87 (> 65)
such that for any 8 > 67,

[#(7) — 2(r)] < K(8) exp(~27)[£(0) — (0)

< K(8) exp(— gT)do
<D

and thus, |£(t) — z(t)| < D for all t > 7. This means that
zZ(t) € Q) fort > 7 (because V(z) < c+%7 V(z") > c+6 =
|x* — x| > D). Hence, the control is unsaturated after the time
T (u = a(Z(t)). t > 7).

By the continuous differentiability, « is Lipschitz on {}y. De-
fine L as a Lipschitz constant of & on ;. Thus, by taking
63(> 67) such that LK (8) exp(—27)do < € for any 6 > 63,

[Au(t)] = |a(2(t)) — a(z(t))]
< LI(t) — =()]

< LK (§) exp(~ 21)[(0) = 2(0)
= LK(8) exp(~ 37)

x [#(0) — 2(0)] exp(~ 5 (¢ ~ 7))
< cexp(~2(t = 7))

for # > 63 and t > 7. This completes the proof. ]

Finally, the following theorem shows that the semi-global
asymptotic stability of the overall system.

Theorem 3: Consider the overall system (2), (5) and (7).
Under Assumption 1, there exists a 8 > 0 such that, for all
# > 6~ and for any initial states £(0) € Qq, £(0) € Qo, the so-
lution (z(t), #(t)) of the closed-loop system (2), (5) and (7) are

uniformly bounded and converge to the origin. Moreover, with
the # chosen, the origin of the closed-loop system is stable.

Proof: The closed-loop system with « as in (5) can be written
as

& = f(z) + g(z)a(z) + g(z)Au
&= f(&)+ g(@)u— 5, C'(Ci — Cx)

which leads to
V(w) = LiV(x) + LyV(z)a(z) + LV {(z)Ault).
Define a constant Aty as

AUmar 1= max |1) - (1($)|,
z€Q
— <ol
whose existence is guaranteed by the compactness of §2; and the
continuity of a(x) on €. It can be easily seen that |Au(t)| <
Atmaz while 2(t) remains in ;. Since Ly V', L,V and o are
continuous, there is a constant h > 0 such that

ILyV{z) 4+ LyV{(z)a(z) + LyV(z)v| < h

forall z € Q; and |v] € Atmax.

Now let 7 = ;4,1 It then follows that, for every initial condi-
tion 2(0) € Qo,

. ] .
Vie(t)) <c+ 2 for0 <t <7,

since |Au(t)| < Aumaz during that time interval. Next, from
the fact that L V' (x) + LgV (2)a(z) is strictly negative for
¢ < Vi) <ec+ % it follows that there is an ¢ > 0 such
that L,V (z) + L,V (z)a(z) + LyV{(2)v < 0 whenever ¢ <
V(z) < ¢+ £ and |[v] < e. By applying Lemma 2 with the
7, € and £(0) € Qg, it can be shown that there exists a 8" such
that, for any 8 > 67, |Au(t)| < e fort > 7. Therefore, for any
z(0), £(0) € Qo,

Vie(t)) <c+ for all ¢. (16)

N | S

since V < O forall ¢ > 7 and all z such that ¢ < Viz) <c+ %.
This fact, with the equation (9), shows the uniform boundedness
of the state x(t) and Z(¢t).

Now it is shown that 2(¢) — 0 as ¢ —» oo. This argument
is similar to the one proposed by [14, Theorem 4.1]. Pick an
€1 > 0. Then there exists an ¢; > 0 such that V(z) < ¢
implies jz| < €; by the positive definiteness of V'(z) on ;.
By the continuity again, there are positive constants hq and &,
such that

LV (@) + LoV (@)a(e) + LoV (@) < ~hy

forallz € {z|ei < V(z) <c+S}andallv € {v]||v] <&}
Then let T > 7 be such that € exp(—%(T — 1)) < 41, and let
T’ be such that h (T' —T) > c+ §. By (16), V(z(t)) < ¢+ 3
for0 <t <T.ByLemma?2, Au(t) < é;torT <t < 0.
Thus, V{(z(t)) < —hi as long as V(z(t)) > €}. It then follows
that there isat such that T < { < T + T and V' (z(f)) < €.
Finally, it is clear that. if V' (z(f)) < €| for some ¢ such that
£ > T, it follows that V (z(t)) < €} for all larger ¢. This shows
the convergence of x(t) to the origin. Again, by (9), Z(t) also
converges to the origin.
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From now on, the stability of the overall system is shown for
a 8 selected as above. In fact, it is shown that for any given €3,
there exists p such that

[z(0)| < pand |2(0)[ < p
= Ja(t)] < e2and [5(8)] < ea.

Since the region of interest is {2, without loss of generality, €2
is assumed to be small so that l.l‘ < e = x € Q. For given
€2, choose p; such that V(z) < p1 = |z| < %, and €}, such
that |z} < ¢, = V(z) < &-. By the continuity again, there
exists 62 > 0 such that

LiV(z) 4+ LyV(z)a(z) + LgV(z)v <0, (A7)

forallz € {z |8 < V(z) < pitandallv € {v}|v] < 2}
Now, choose p as
- b2 } (18)

— M / —_ - =
p_mm{ﬁz’ 4K ()" 2LK(8)

Then, for |z(0)] < p and |Z(0}| < p, (0) € ¢ and £(0) €
Q. Suppose that there exists a time 7' such that #(T) € 0,
in which 9 is the boundary of Q;, and &(t) € Q; for 0 <
t < T. Clearly, T > 0 since &(¢) is continuous with respect
to t, and T may be oco. However, the state z(¢) is contained in
€, for all £ by the previous argument. During the time interval
0<t<T),

|Au(t)] < L{E(t) — «(t)]
< LK(6)|2(0) — z(0)|
< LK(6)(2p)
< 62,

which, with (17), implies that z(#) is captured in the region
{z : V() < pi}. Thus,
ja(t)] < 2. (19

On the other hand,
(E(0] < o()] + K(8) exp(~ S 0}(0) — (0)]
< 5+ KO)2p)
< e (20)

by (19) and (18). However, since £(t) € Qg for0 < t < T
by (20), the temporary assumption £(T') € 92, is impossible.
Thus, T should be oo, that is, (19) and (20) hold for all ¢ > 0.
This completes the proof. n

II1. Conclusion

In this paper, an output feedback scheme is proposed for
semi-global stabilization. The required conditions are only
global state feedback stabilizability and completely uniform ob-
servability. The scheme satisfies the properties (P), (P) and (P)
of section I which are inherited from the linear output feedback
stabilization.

On the other hands, (P) is not exactly satisfied, since there
should be a procedure to select appropriate 6 generally depend-
ing on the chosen state feedback law «(x). This is because that

the observer should be sufficiently faster than the plant dynam-
ics, which is unnecessary for linear output feedback. However,
remembering that, for good performance, convergence of ob-
serve r should be faster than that of the plant even for linear
systems, it can be thought as a reasonable drawback.
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