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Abstract: In this paper, a new type of output feedback control, called a receding horizon finite memory control (RHFMC),

is proposed for stochastic discrete-time state space systems. Constraints such as linearity and finite memory structure with

respect to an input and an output, and unbiasedness from the optimal state feedback control are required in advance. The

proposed RHFMC is chosen to minimize an optimal criterion with these constraints. The RHFMC is obtained in an explicit

closed form using the output and input information on the recent time interval. It is shown that the RHFMC consists of a

receding horizon control and an FIR filter. The stability of the RHFMC is investigated for stochastic systems.
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1. Introduction
For mathematical analysis, plants or processes are often

represented as infinite impulse response (IIR) types, which

can also be described over state space. Controls are often

represented in the form of state feedback controls when all

states are available, or output feedback controls when only

partial states, known as outputs, are available. In case of

output feedback controls, filters are often introduced to ob-

tain the state information from inputs and measured out-

puts. These filters are also conventionally of IIR types. A

typical output feedback control for stochastic linear systems

is the LQG control where the Kalman filter of the IIR type

is used to estimate all the states and the LQ control in the

form of state feedback controls is calculated from the esti-

mated state.

However, in fields of discrete-time signal processing, the fi-

nite impulse response (FIR) type is much preferable to the

IIR type despite of heavy calculation of FIR filters. The

guaranteed stability, the robustness to numerical error and

temporary uncertainties, and perfect signal reconstruction

such as a linear phase properties are well known good prop-

erties of the FIR structure. When signal models are rep-

resented as general state space models with systems and

measurement noises, the FIR filters were proposed for es-

timation of the states. The recursive limited memory filter

[1] and the optimal FIR filter [2] were given with some lim-

itations. Recently the unbiased FIR filter [3] were obtained

by directly minimizing performance index of minimum vari-

ance subject to the unbiasedness constraint. Good properties

such as deadbeatness for systems without noises have been

obtained for these filters. So it will be meaningful to inves-

tigate whether we can adopt the FIR structure even in the

output feedback control for state space system models.

Output feedback controls (uk) at a current time k with finite

memory structure can be represented using measurements

(yi) and inputs (ui) during a finite time, i.e., a horizon [k −
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Nf k], as

uk =

k−1∑
i=k−Nf

Hk−iyi +

k−1∑
i=k−Nf

Lk−iui (1)

for some gains Hi and Li. Note that even though the control

(1) uses the finite measurements and inputs on the recent

time interval as FIR filters, this is not of the FIR form. So

this kind of the control will be called finite memory controls

(FMC) rather than FIR controls.

In this paper, the output feedback control uk at a cur-

rent time k with the finite memory structure will be ob-

tained from a usual receding horizon linear quadratic gaus-

sian (LQG) criterion

E

[Nc−1∑
j=0

[
xT

k+j|kQcxk+j|k + uT
k+j|kRcuk+j|k

]
+ xT

k+Nc|kFxk+Nc|k

]
. (2)

where k in the right side of vertical bar means the current

time.

These output feedback controls with the finite memory struc-

ture for the cost criterion (2) can be called receding horizon

finite memory controls (RHFMC). To the best of authors’

knowledge, for discrete-time state space models, there is no

general result for output feedback controls with the finite

memory like the FIR filter using finite measurements and

inputs. The discrete-time system is more useful to apply to

digital computers.

The receding horizon control has several advantages and thus

widely applied to industrial problems. [4], [5], [6]. We will re-

quire a constraint that the proposed RHFMC should be unbi-

ased from the optimal state feedback control that is obtained

when full information with respect to the state is available.

This unbiasedness constraint has a physical meaning that it

allows the proposed RHFMC to track the optimal state feed-

back control on average. Since any output feedback control

can not be better in view of performance than the optimal



state feedback control, it is desirable that RHFMC should

be unbiased from the optimal state feedback control. It will

be shown in this paper that, surprisingly, even with this re-

quirement the optimal solution exists. The stability will be

checked for the proposed RHFMC.

This paper is organized as follows. In Section 2, the RHFMC

for discrete-time state space systems is proposed in a form of

(1). In Section 3, the separation principle of the RHFMC is

discussed and the stability condition is investigated. Finally,

conclusions are stated in Section 4.

2. Receding Horizon Finite Memory Controls
Consider a linear discrete-time state space model:

xk+1 = Axk + Buk + Gwk, (3)

yk = Cxk + vk (4)

where xk ∈ <n is the state, uk ∈ <l and yk ∈ <q are

the input and measurement, respectively. At the initial time

k0 of the system, the state xk0 is a random variable with a

mean x̄k0 and a covariance Pk0 . The system noise wk ∈ <p

and the measurement noise vk ∈ <q are zero-mean white

Gaussian and mutually uncorrelated. The covariances of wk

and vk are denoted by Qf and Rf , respectively, which are

assumed to be positive definite matrices. These noises are

uncorrelated with the initial state xk0 .

The system (3)-(4) will be represented in a batch form on

the time interval [k + j −Nf k + j] called the horizon. On

the horizon [k + j −Nf k + j], measurements are expressed

in terms of the state xk+j at the time k + j and inputs as

follows:

Yk+j−1 = C̄Nf xk+j + B̄Nf Uk+j−1 + ḠNf Wk+j−1

+ Vk+j−1 (5)

where

Yk+j−1
4
= [yT

k+j−Nf
yT

k+j−Nf +1 · · · yT
k+j−1]

T , (6)

Uk+j−1
4
= [uT

k+j−Nf
uT

j−Nf +1 · · · uT
k+j−1]

T , (7)

Wk+j−1
4
= [wT

k+j−Nf
wT

k+j−Nf +1 · · · wT
k+j−1]

T ,

Vk+j−1
4
= [vT

k+j−Nf
vT

k+j−Nf +1 · · · vT
k+j−1]

T

and C̄Nf , B̄Nf , ḠNf are obtained from

C̄i
4
=


CA−i

CA−i+1

CA−i+2

...

CA−1

 =

[
C̄i−1

C

]
A−1, (8)

B̄i
4
= −


CA−1B CA−2B · · · CA−iB

0 CA−1B · · · CA−i+1B

0 0 · · · CA−i+2B
...

...
...

...

0 0 · · · CA−1B


=

[
B̄i−1 −C̄i−1A

−1B

0 −CA−1B

]
, (9)

Ḡi
4
= −


CA−1G CA−2G · · · CA−iG

0 CA−1G · · · CA−i+1G

0 0 · · · CA−i+2G
...

...
...

...

0 0 · · · CA−1G


=

[
Ḡi−1 −C̄i−1A

−1G

0 −CA−1G

]
, (10)

1 ≤ i ≤ Nf .

Note that definitions of (8)-(10) will be used through this pa-

per. It is assumed that A is nonsingular. When continuous-

time systems ẋ(t) = Ãx(t) + B̃u(t) are discretized with the

sampling time T , we obtain sampled-data systems, xj+1 =

Axj + Buj where A = eÃT . So the assumption of the non-

singularity of A is not too restrictive to apply in practical

view.

The control at the time k+j on the horizon [k+j−Nf k+j]

will be denoted as uk+j|k where 0 ≤ j ≤ Nc − 1. An FMC

at the time k + j can be expressed as a linear function of

the finite measurements Yk+j−1 (6) and inputs Uk+j−1 (7)

on the horizon [k + j −Nf , k + j] as follows:

uk+j|k
4
= HjYk+j−1 + LjUk+j−1 (11)

where Hj and Lj are gain matrices of a linear control. If

compared with the form (1), Hj and Lj are denoted by

Hj =
[

HNf ,j HNf−1,j · · · H1,j

]
(12)

Lj =
[

LNf ,j LNf−1,j · · · L1,j

]
. (13)

It is noted that the control defined in (11) uses the finite

measurements and inputs.

If we assume that the full information of the state is available,

it is well known that the optimal state feedback control for

the optimal criterion (2) can be written

u∗k+j|k = −[Rc + BT KNc−j−1B]−1BT KNc−j−1Axk+j (14)

where Ki satisfies

Ki+1 = AT Ki[I + BR−1
c BT Ki]

−1A + Qc (15)

with the boundary condition

K0 = F. (16)

As the control (14), the optimal control is represented in a

form of state feedback. It is desirable that the intermediate

output feedback FMC control (11) can track the optimal

state feedback control (14) on average. Thus, we require a

constraint that the expectation of the control (11) must be

unbiased from the optimal state feedback control (14) as

E[uk+j|k] = E[u∗k+j|k] for all states. (17)

The left and the right sides of (17) can be given as

E[uk+j|k] = HjC̄Nf E
[
xk+j

]
+

[
HjB̄Nf + Lj

]
Uk+j−1



and

E[u∗k+j|k]

= E
[
− [Rc + BT KNc−j−1B]−1BT KNc−j−1Axk+j

]
= −[Rc + BT KNc−j−1B]−1BT KNc−j−1AE

[
xk+j

]
.

Since the unbiasedness condition (17) should be applied to

all states and all controls, the following relations can be ob-

tained:

HjC̄Nf = −[Rc + BT KNc−j−1B]−1BT KNc−j−1A

(18)

HjB̄Nf = −Lj (19)

which will be called the unbiasedness constraint. It is noted
that the constraint must hold regardless of the state and the
input. This constraint may be too strict, but surprisingly, we
were able to obtain the solution. The objective now is to ob-
tain the best gain matrix HB,j , subject to the unbiasedness
constraints (18)-(19).

HB,j

= min
HB,j

E

[Nc−1∑
j=0

[
x

T
k+j|kQcxk+j|k + u

T
k+j|kRcuk+j|k

]
+ x

T
k+Nc|kFxk+Nc|k

]

= min
HB,j

E

[Nc−1∑
j=0{

[Rc + B
T

KNc−j−1B]
−1

B
T

KNc−j−1Axk+j|k + uk+j|k
}T

[Rc + B
T

KNc−j−1B]{
[Rc + B

T
KNc−j−1B]

−1
B

T
KNc−j−1Axk+j|k + uk+j|k

}
+ tr

[ Nc−1∑
j=0

KjGQG
T ]]

+E
[
x

T
k KNc xk

]
. (20)

Since

uk+j|k + [Rc + BT KNc−j−1B]−1BT KNc−j−1Axk+j|k

= HjḠNf Wk+j−1 + HjVk+j−1, (21)

the following relation for the first term in (20) is obtained

E

[{
[Rc + B

T
KNc−j−1B]

−1
B

T
KNc−j−1Axk+j|k

+ uk+j|k
}T

[Rc + B
T

KNc−j−1B]{
[Rc + B

T
KNc−j−1B]

−1
B

T
KNc−j−1Axk+j|k

+ uk+j|k
}]

= tr(
√

Rc + BT KNc−j−1BHjΞNf
H

T
j

√
Rc + BT KNc−j−1B)

with ΞNf given by

Ξi
4
= Ḡi

[
diag(

i︷ ︸︸ ︷
Qf Qf · · · Qf )

]
Ḡ

T
i +

[
diag(

i︷ ︸︸ ︷
Rf Rf · · · Rf )

]
=

[
Ξi−1 0

0 Rf

]

+

[
C̄i−1

C

]
A
−1

GQf G
T

A
−T

[
C̄i−1

C

]T

. (22)

The last two terms in (20) are constant for a control gain
HB,j . All that remains is to minimize the first term in (20) in
order to obtain the solution. The objective now is to obtain
the optimal gain matrix HB,j , subject to the unbiasedness

constraint (18)-(19), in such a way that the cost function has
minimum variance as follows:

HB,j

= arg min
HB,j

tr
[√

Rc + BT KNc−j−1BHjΞNf
H

T
j√

Rc + BT KNc−j−1B
]

= arg min
H

n∑
l=1

h
T
l,jΞNf

hl,j . (23)

For convenience, partition the matrix Hj in (11) as

HT
j

√
Rc + BT KNc−j−1B

=
[

h1,j h2,j · · · hn,j

]
.

Since the unbiasedness constraint (18)-(19) is satisfied, the
sth unbiasedness constraint is

C̄
T
Nf

hs,j = −A
T

KNc−j−1B[Rc + B
T

KNc−j−1B]
−1√

Rc + BT KNc−j−1Bes,

1 ≤ s ≤ n (24)

where es is the sth unit vector such that es =
[0, · · · , 0, 1, 0, · · · , 0]T with the nonzero element in the sth
position. For each hs,j , the following cost function is estab-
lished:

Js,j(hs,j , λs) = h
T
s,jΞNf

hs,j + λ
T
s,j(C̄

T
Nf

hs,j

+ A
T

KNc−j−1B[Rc + B
T

KNc−j−1B]
−1√

Rc + BT KNc−j−1Bes) (25)

where λs is the sth vector of Lagrange multipliers, which

is associated with the sth unbiasedness constraint (24).

Therefore, the objective is now to minimize Js,j(·, ·) (25)

with respect to hs,j and λs,j . To minimize Js,j(·, ·),
two necessary conditions ∂Js,j(hs,j , λs,j)/∂hs = 0 and

∂Js,j(hs,j , λs,j)/∂λs,j = 0 give 2hs = −Ξ−1
Nf

C̄Nf λs and (24),

and thus hs is determined by

hs,j = −Ξ−1
Nf

C̄Nf (C̄T
Nf

Ξ−1
Nf

C̄Nf )−1AT KNc−j−1B

[Rc + BT KNc−j−1B]−1√
Rc + BT KNc−j−1Bes. (26)

Note that the matrix C̄T
Nf

Ξ−1
Nf

C̄Nf is nonsingular if and only

if the matrix C̄Nf is of full rank, since the matrix ΞNf is

positive definite. The matrix C̄Nf is of full rank if {A, C} is

observable for Nf ≥ n. The gain matrix H is reconstructed

from hs (26) as follows:

HT
j = −Ξ−1

Nf
C̄Nf (C̄T

Nf
Ξ−1

Nf
C̄Nf )−1AT KNc−j−1B

[Rc + BT KNc−j−1B]−1
[

e1 e2 · · · en

]
= − Ξ−1

Nf
C̄Nf (C̄T

Nf
Ξ−1

Nf
C̄Nf )−1AT KNc−j−1B

[Rc + BT KNc−j−1B]−1 (27)

and then becomes HB,j in (23). If j is replaced by 0, the

RHFMC is obtained. Therefore, the RHFMC uk|k with the

optimal gain matrix HB,0, shortly HB , is proposed in the

following theorem.



Theorem 1: When {A, C} is observable and Nf ≥ n, the

RHFMC uk|k on the horizon [k −Nf , k] is given as follows:

uk|k = HB(Yk−1 − B̄Nf Uk−1) (28)

with the optimal gain matrix HB determined by

HB = −[Rc + BT KNc−1B]−1BT KNc−1

A(C̄T
Nf

Ξ−1
Nf

C̄Nf )−1C̄T
Nf

Ξ−1
Nf

(29)

where Yk−1, Uk−1, C̄Nf , B̄Nf , and ΞNf are given by (6)-(9)

and (22), respectively.
The dimension of ΞNf in (29) may be large. So the numerical
error during inverting the matrix can happened. To avoid
the handling of the large matrix, the optimal gain matrix
can be obtained from the following recursive equations [3] :

HB = −[Rc + B
T

KNc−1B]
−1

B
T

KNc−1AΩ
−1
Nf

ηNf
(30)

where

Ωi+1 = [I + A−T (Ωi + CT R−1
f C)

A−1GQfGT ]−1A−T (Ωi + CT R−1
f C)A−1 (31)

ηi+1 = [I + A−T (Ωi + CT R−1
f C)A−1GQfGT ]−1A−T[

ηi CT R−1
f

]
(32)

with Ω0 = 0 and η0 = 0. Note that recursive equations

can be easily derived from the structure of the matrix (22).

From Theorem 1, it can be known that the RHFMC uk|k (28)

processes the finite measurements and inputs on the horizon

[k − Nf , k] linearly and has the properties of unbiasedness

from the optimal state feedback control by design. Note

that the optimal gain matrix HB (29) requires computation

only on the interval [0, Nf ] once and is time-invariant for all

horizons. This means that the proposed RHFMC is time-

invariant. It is a general rule of thumb that, due to the

finite memory structure, the proposed RHFMC may also be

robust against temporary modeling uncertainties or round-

off errors. The separation principle and the stability for the

proposed RHFMC will be investigated in the next section

3. Separation Principle and Stability
Before we proceed to investigate the stability of systems

without noises, it is shown that the proposed control can be

separated as a receding control and an FIR filter.

Theorem 2: The RHFMC (28) can be represented as a re-

ceding control and an FIR filter:

uk|k = −[Rc + BT KNc−1B]−1BT KNc−1Ax̂k (33)

where the FIR filter x̂k is given as follows:

x̂k = (C̄T
Nf

Ξ−1
Nf

C̄Nf )−1C̄T
Nf

Ξ−1
Nf

[Yk−1 − B̄Nf Uk−1]. (34)

x̂k in (34) is an actual state estimator.

Theorem 2 can easily be proved so that the proof is omitted.

In [3], it can be found that x̂k in (34) is an optimal minimum

variance state estimator with the FIR structure. It is known

that the FIR filter (34) is a quasi-deadbeat filter which has

the deadbeat property for the systems without noises. Be-

fore the stability for stochastic systems is investigated, it is

shown that the stability is guaranteed for deterministic sys-

tems that is obtained from (3)-(4) by removing noises, i.e,

xk+1 = Axk + Buk and yk = Cxk .

Theorem 3: [7] If the final weighting matrix F in the cost

function satisfies the following inequality:

F ≥ Qc + DT RcD + (A−BD)T F (A−BD)

for some D ∈ Rl×n, (35)

the system driven by the proposed RHFMC, is asymptoti-

cally stable under the deterministic systems without noises.

If driven by the proposed RHFMC, the system can be rep-

resented as

xk+1 =

[
A−B[Rc + BT KNc−1B]−1BT KNc−1A

]
xk

− BHḠNf Wk−1 −BHVk−1 + Gwk. (36)

Theorem 3 implies that A−B[Rc+BT KNc−1B]−1BT KNc−1A

is Hurwitz for the terminal weighting matrix F satisfying the

inequality (35). Therefore, only if power of noises is finite,

the following bound is guaranteed for stochastic systems:

E[xkxT
k ] < ∞. (37)

4. Conclusion
In this paper, a new type of control, RHFMC, is pro-

posed for discrete-time state space models using the input

and output information. The proposed RHFMC is obtained

by minimizing the optimal criterion, with additional unbi-

asedness constraints which look difficult to solve. It is very

interesting that RHFMC consists of the receding horizon

control and the FIR filter. It is shown that there exists a

closed form solution to gain matrices even under the strong

unbiasedness condition (18)-(19). The RHFMC is unbiased

from the optimal state feedback control that can be obtained

only if the full state information is available. Due to the fi-

nite memory structure, the RHFMC is believed to be robust

against temporary modeling uncertainties or numerical er-

rors. It is shown that the stability is guaranteed under the

cost monotonicity condition of the receding horizon control.

The proposed RHFMC is a new type of control and can be a

substitute for the commonly used output feedback controls

such as conventional LQG.

In addition, the proposed RHFMC will be very useful for

multirate systems, where the FIR structure is usually essen-

tial. It is noted that the concept in this paper may be applied

to the other type of optimal criterion.
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