• Title/Summary/Keyword: state-feedback control

Search Result 1,065, Processing Time 0.047 seconds

Robot manipulator's contact tasks on uncertain flexible objects

  • Wu, Jianqing;Luo, Zhiwei;Yamakita Masaki;Ito, Koji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.460-463
    • /
    • 1995
  • The present paper studies a robot manipulator's contact tasks on the uncertain flexible objects. The flexible object's distributed parameter model is approximated into a lumped "position state-varying" model. By using the well-known nonlinear feedback compensation, the robot's control space is decomposed into the position control subspace and the object's torque control subspace. The optimal state feedback is designed for the position loop, and the robot's contact force is controlled through controlling the resultant torque on the object using model-reference simple adaptive control. Experiments of a PUMA robot interacting with an aluminum plate show the effectiveness of this control approach. approach.

  • PDF

A Study on the Performance of Car Active Suspension System by the output Feedback and Sky-hook Control Method (출력귀환과 스카이 훅 제어 방식에 의한 차량 현가 장치의 성능에 관한 연구)

  • 김재열
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.7-16
    • /
    • 1996
  • The dynamic model of the suspension system is developed by using both sky-hook control and output feedback control techniques. based on the performance sensitivity index, Many vehicles use sky-hook control theory operated with only one sensor, due to relatively low cost and easy implementation. On the other hand, output feedback control implemented with state variables has difficulties in measuring such as tire deflection, etc.

  • PDF

Observer Theory Applied to the Optimal Control of Xenon Concentration in a Nuclear Reactor (옵저버 이론의 원자로 지논 농도 최적제어에의 응용)

  • Woo, Hae-Seuk;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.21 no.2
    • /
    • pp.99-110
    • /
    • 1989
  • The optimal control of xenon concentration in a nuclear reactor is posed as a linear quadratic regulator problem with state feedback control. Since it is not possible to measure the state variables such as xenon and iodine concentrations directly, implementation of the optimal state feedback control law requires estimation of the unmeasurable state variables. The estimation method used is based on the Luenberger observer. The set of the reactor kinetics equations is a stiff system. This singularly perturbed system arises from the interaction of slow dynamic modes (iodine and xenon concentrations) and fast dynamic modes (neutron flux, fuel and coolant temperatures). The singular perturbation technique is used to overcome this stiffness problem. The observer-based controller of the original system is effected by separate design of the observer and controller of the reduced subsystem and the fast subsystem. In particular, since in the reactor kinetics control problem analyzed in the study the fast mode dies out quickly, we need only design the observer for the reduced slow subsystem. The results of the test problems demonstrated that the state feedback control of the xenon oscillation can be accomplished efficiently and without sacrificing accuracy by using the observer combined with the singular perturbation method.

  • PDF

Equivalent classes of decouplable and controllable linear systems

  • Ha, In-Joong;Lee, Sung-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.405-412
    • /
    • 1992
  • The problem we consider in this paper is more demanding than the problem of input-output linearization with state equivalence recently solved by Cheng, Isidori, Respondek, and Tarn. We request that the MIMO nonlinear system, for which the problem of input-output linearization with state-equivalence is solvable, can be decoupled. In exchange for further requirement like this, our problem produces more usable and informative results than the problem of input-output linearization with state-equivalence. We present the necessary and sufficient conditions for our problem to be solvable. We characterize each of the nonlinear systems satisfying these conditions by a set of parameters which are invariant under the group action of state feedback and transformation. Using this set of parameters, we can determine directly the unique one, among the canonical forms of decouplable and controllable linear systems, to which a nonlinear system can be transformed via appropriate state feedback and transformation. Finally, we present the necessary and sufficient conditions for our problem to be solvable with internal stability, that is, for stable decoupling.

  • PDF

A study on congesting control scheme for LAN interworkding in connectionless data service (비연결형 데이터 서비스에서 LAN연동을 위한 폭주 제어에 관한 연구)

  • 박천관;전병천;김영선
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.3
    • /
    • pp.29-38
    • /
    • 1998
  • This ppaer suggests a congestion control scheme for CL(ConnectionLess) overlay network using the feedback loops getween CL werver, between CL servers, and the header translation table of CL server. The CL overlay network for CBDS(Connectionless Broadband Data Service) defined by ITU0T(International Telecommunication Union-Telecommunication) consists of CL servers which route frames and links which connect between CL user and CL server or between CL servers. In this CL overlay network, two kinds of congestions, link congestion and CL server congestion, may occur. We suggest a scheme that can solve the congestion using ABR(Available Bit Rate) feedback control loop, the traffic control mechanism. This scheme is the link-by-link method suing the ABR feedback control loops between CL user and CL server or between CL servers, and the header translation table of CL server. As CL servers are always endpoints of ABR connections, the congestion staturs of the CL server can be informed to the traffic sources using RM(Resource Management) cell of the ABR feedback loops. Also CL server knows the trafffic sources making congestion by inspecting the source address field of CLNAP-PDUs(ConnectionLess Network Access Protocol - Protocol Data Units). Therefore this scheme can be implemeted easily using only both ABR feedback control loop of ATM layer and the congestion state table using the header translation table of CL server because it does not require separate feedback links for congestion control of CL servers.

  • PDF

Optimal Control Policy for Linear-Quadratic Control Problems with Delay and Intermediate State Constraints

  • Chong, Kil-To;Kostyukova, Olga;Kurdina, Mariya
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.845-858
    • /
    • 2008
  • In this paper, we consider a terminal, linear control system with delay, subject to unknown but bounded disturbances. For this system, we consider the problem of constructing a worst-case optimal feedback control policy, which can be corrected at fixed, intermediate time instants. The policy should guarantee that for all admissible uncertainties the system states are in prescribed neighborhoods of predefined system states, at all fixed, intermediate time instants, and in the neighborhood of a given state at a terminal time instant, and the value of the cost function is the best guaranteed value. Simple explicit rules(which can be easily implemented on-line) for constructing the optimal control policy in the original control problem are derived.

A Study on Multirate Control Using a Current Estimator (현재 상태 추정기를 이용한 멀티레이트 제어에 관한 연구)

  • 황희철;정정주;정동실
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.12
    • /
    • pp.1004-1013
    • /
    • 2002
  • A multirate state feedback control (MRSFC) method is proposed for systems sensitive to disturbance and noise based on the multirate estimator design using current estimator. MRSFC updates the controller output slower than the measurement sampling fiequency of system output by a lifting factor $R=T_c/T_s$ The closed-loop MRSFC system is less sensitive to disturbance and noise due to filtering effect than the conventional single-rate control system The multirate estimator gain can be obtained by solving a conventional pole placement problem such that MRSFC has the same spectrum of eigenvalues in the s-plane as the single-rate control. We applied the proposed multirate state feedback controller to a galvanometer servo system Simulation and experimental results show that settling and tracking performances are improved compared with a conventional single-rate pole placement control (PPC).

Application of optimal control to a distillation column (증류탑에의 최적제어 응용연구)

  • 장홍래;박현수;서인석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.209-211
    • /
    • 1986
  • The continuous time linear quadratic problem (LQP) has been applied to the control of a 8-tray distillation column using the code VASP. The weighting matrices for the state variables and control variables were adjusted iteratively. The simulation results of the optimal control with 2 inputs and 2 outputs showed that the LQP method is very satisfactory for a rapid response and feedback control, and any desired response could be obtained by adjusting the weighting matrices Q under = and R under =. The feedback gain matrix K under = was also determined.

  • PDF

Policy Iteration Algorithm Based Fault Tolerant Tracking Control: An Implementation on Reconfigurable Manipulators

  • Li, Yuanchun;Xia, Hongbing;Zhao, Bo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1740-1751
    • /
    • 2018
  • This paper proposes a novel fault tolerant tracking control (FTTC) scheme for a class of nonlinear systems with actuator failures based on the policy iteration (PI) algorithm and the adaptive fault observer. The estimated actuator failure from an adaptive fault observer is utilized to construct an improved performance index function that reflects the failure, regulation and control simultaneously. With the help of the proper performance index function, the FTTC problem can be transformed into an optimal control problem. The fault tolerant tracking controller is composed of the desired controller and the approximated optimal feedback one. The desired controller is developed to maintain the desired tracking performance at the steady-state, and the approximated optimal feedback controller is designed to stabilize the tracking error dynamics in an optimal manner. By establishing a critic neural network, the PI algorithm is utilized to solve the Hamilton-Jacobi-Bellman equation, and then the approximated optimal feedback controller can be derived. Based on Lyapunov technique, the uniform ultimate boundedness of the closed-loop system is proven. The proposed FTTC scheme is applied to reconfigurable manipulators with two degree of freedoms in order to test the effectiveness via numerical simulation.

Reactivity balance for a soluble boron-free small modular reactor

  • van der Merwe, Lezani;Hah, Chang Joo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.648-653
    • /
    • 2018
  • Elimination of soluble boron from reactor design eliminates boron-induced reactivity accidents and leads to a more negative moderator temperature coefficient. However, a large negative moderator temperature coefficient can lead to large reactivity feedback that could allow the reactor to return to power when it cools down from hot full power to cold zero power. In soluble boron-free small modular reactor (SMR) design, only control rods are available to control such rapid core transient. The purpose of this study is to investigate whether an SMR would have enough control rod worth to compensate for large reactivity feedback. The investigation begins with classification of reactivity and completes an analysis of the reactivity balance in each reactor state for the SMR model. The control rod worth requirement obtained from the reactivity balance is a minimum control rod worth to maintain the reactor critical during the whole cycle. The minimum available rod worth must be larger than the control rod worth requirement to manipulate the reactor safely in each reactor state. It is found that the SMR does have enough control rod worth available during rapid transient to maintain the SMR at subcritical below k-effectives of 0.99 for both hot zero power and cold zero power.