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Optimal Control Policy for Linear-Quadratic Control Problems
with Delay and Intermediate State Constraints

Kil To Chong, Olga Kostyukova, and Mariya Kurdina

Abstract: In this paper, we consider a terminal, linear control system with delay, subject to
unknown but bounded disturbances. For this system, we consider the problem of constructing a
worst-case optimal feedback control policy, which can be corrected at fixed, intermediate time
instants. The policy should guarantee that for all admissible uncertainties the system states are in
prescribed neighborhoods of predefined system states, at all fixed, intermediate time instants, and
in the neighborhood of a given state at a terminal time instant, and the value of the cost function
is the best guaranteed value. Simple explicit rules (which can be easily implemented on-line) for
constructing the optimal control policy in the original control problem are derived.

Keywords: Linear-quadratic control problems, worst-case feedback policies.

1. INTRODUCTION

To control dynamic systems with uncertainties,
there are several approaches for constructing
corresponding optimization problems; refer to [9]. We
briefly describe some of these approaches.

Suppose that we need to control the dynamic
system:

() = f (O, u(t),t, (1), 2(0) =z, teT =[0,4], (1)
st.z(t) e X;,i=1,...m, 2

where z(t)eR", and u(t)e R are the state vector

and scalar input, respectively, eT(Ole

<H <..<t, <, =t) and X;cR" are given
instants and sets, respectively and i=1,...,m. Here,
w(f)e R is an unknown disturbance. It is supposed
that at each time T, =[t;,t;,1) the
disturbance function w(¢),# €T;, belongs to a given

bounded set of functions defined at this interval. The
quality of the control function is evaluated by a given
cost function:

interval
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J(z(),u()), 3)

where z(-) = (z(¢t),t € T), u(-) = (u(t),t €T),is the sys-
tem trajectory and control function, respectively.

I. The first approach involves constructing and
solving an optimization problem, based on the
assumption that the uncertainty is completely
deterministic. In our case, this means that we are

solving the following open-loop optimal control
(OLOC) problem:

min J(z(:),u("))

st 2(t) = f(z(),u(t),t,w" (1)), teT =[0,t,], 4)
z2(0)=2zp, z(t,) e X;,i=1,...,m+],

where there is a fixed, admissible disturbance

w'(t),teT. An optimal control  function

u® (t),t €T, for the deterministic problem (4) is used

as the input function, to control a real-world non-
deterministic system (1), where w(f),t T, which

may be any arbitrary, admissible disturbance.

There are clear disadvantages to this approach,
because constraints (2) are not satisfied for the
trajectory of a real-world system (1) generated by an
open-loop optimal control policy and a realized

disturbance W (r),r eT.

II. The second approach relies on min-max
optimization and involves the following. We search
for a control function u(?),f €T, that guarantees that
constraints (2) are satisfied for all admissible

disturbances, and has the best value of the cost
function (3), based on the worst-case, realized
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disturbance. The control policy that solves this
problem is called open-loop worst-case optimal
control (OLWOC). The use of this control policy in a
real-world system (1) guarantees that the constraints
(2) are satisfied, for all admissible disturbances.

Note that this approach (similar to the first)
optimizes a single control policy over all possible
disturbances, and therefore does not consider the fact
that more information about states becomes available
as time advances. It is often unrealistic to presume
that a unique, open-loop control function results in the
expected behavior for all possible disturbances [4]. As
a result, there may be problems with the feasibility of
this approach; refer to [10,13,16].

IIl. In the third approach we formulate an
optimization problem for more realistic assumptions,
including the possibility of correcting a control
function depending on the measurements of states. In
such an approach, it is supposed that at every
sampling instant f;,i=1,..,m, (1) We know the
z; = z(t;)
generated by the control input u(r),#<[0,;), and
realized disturbance w(t),z €[0,z;), and (2) We can

correct the future control function that will be used at
the next control interval T, =[t;,7,,;).

corresponding real-world system state

The solution to the optimization problem is not a
single, fixed, optimal control function uO(t),teT ,

but the so-called worst-case optimal control policy,
viz.  Closed-loop worst-case optimal  control
(CLWOC)

7 ={uy (1 2),u (| 2), s, (- 2)}.

This consists of control functions u;(-|z)=

(u;(t|z),t€T;), zeR". In a real-world control
function (1), the i-th control function u;(-|z) is
used at the corresponding time interval 7, with
z=1z(t;), where z(¢;) is the real-world system state
at the instant ¢=¢,. Hence, the realized values of the
control functions depend on the realized states
z;=z(t;) of the system at instants 7=t ,
i=0,1,...,m, and could differ according to the
realizations of w(-).

This often implies improved performance compared
to OLWOC schemes. The approach also avoids the
unfeasibility problems that may result from the use of
OLWOC approaches. The cost of these benefits is that
the computational burden of the feedback min-max
algorithm for constructing the policy may be very
high. Since determination of a control policy is
usually impractical, research has focused on

simplifying the closed-loop, worst-case problem, such
as a means of approximation or parametrization of the

policy [8,9].

Some approaches to overcoming the aforemen-
tioned difficulties are described in the literature.

Methods combining dynamic and parametric
programming for discrete time min-max problems,
based on the assumption that disturbances take values
in a polytope, are proposed in [3,6,10]. Methods for
solving the problem using single, finite-dimensional
optimization are proposed in [5,16]. For very general
parametrization of uncertainties, in [9], the authors
propose to solve a problem in the form of state
feedback via dynamic programming, by discretization
of the state space. Several other types of control
policies are considered in [8] (also, refer to the
references in [8]) on the basis of parametrization. In
[8], the main assumption is that the control laws that
define the policy are expressed via given functions
with unknown parameters. The parameters of these
functions are chosen in an optimal manner, according
to a cost function. An approach which relied upon a
slight modification of the objective function is
presented in [1], for implementing a constrained
quadratic min-max optimization problem.

In all cases, the resulting min-max feedback has a
high computational burden. This is either because the
problem (solved on-line) usually has rather high
dimensionality, or the method suffers from the burden
of dimensionality; from storing a huge volume of
information, if the majority of processing is done off-
line.

Thus, most reported feedback min-max methods are
considered theoretical, rather than practical [4,13].

In this paper, we study a continuous, linear-
quadratic, optimal control problem, subject to
bounded additive uncertainties. In the problem being
considered for the third approach, to construct a
guaranteed control strategy we have the capability to
correct the strategy at fixed, intermediate time instants
t;, €l0,t,] i=1,..,m But, we consider more a realis-

tic case, assuming that there is a communication delay
in the control system: it is supposed that at the current
instant #; we do not know the current system

state, z(f;) but we do know the real-world system
state z(t; —h) at the previous instant t=¢ —h,

where /4> 0.
We propose a method for constructing the worst-

case, optimal control policy #°. For this method, we
present not only the theoretical scheme, but the
justification and the detailed description of
constructive rules for its implementation; it can easily
be realized on-line.

We show that processing the policy is equivalent to
solving a corresponding convex mathematical pro-
gramming (MP) problem with (m—1) decision

variables. The MP problem may be solved off-line.
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Based on the solution to the MP problem, we propose
simple explicit rules (which can easily be imple-
mented on-line) for constructing the corresponding
control policy in the original control problem.

The paper is organized as follows. In Section 2, we
consider a terminal, linear-quadratic optimal control
problem with delay, in the presence of an additive,
unknown, bounded uncertainty. For this system, we
define the optimization problem in an open-loop,
worst-case approach, involving construction of a
corresponding single control function. Subsequently,
we define the optimization problem in a closed-loop
worst-case approach that involves constructing a
guaranteed optimal strategy, which can be corrected at
m fixed, intermediate, time instants. We show that
the second approach is better than the first.

In the beginning of Section 3, we present
theoretical relations defining an optimal control policy

7° Y 0) , which solves the optimization problem. It is

shown that construction of the policy 72'0(Y 0) is
equivalent to solving a bilevel, min-max problem.

In Section 3.1, we prove that a bilevel min-max
problem is equivalent to a convex mathematical
programming problem with m—~1 decision variables.
Based on the solution to the mathematical
programming problem, we derive simple, explicit
rules (which can be easily implemented on-line) for
constructing the optimal control policy in the original
control problem.

In Section 3.2 we describe the characteristics of the

proposed optimal control policy 70 Y 0 ).

In Section 4, other types of control policies are
proposed. The results of numerical experiments are
presented in Section 5.

Hereafter, we use the following notation: A, (S)
denotes the maximum eigenvalue of a matrix S ;
| vllg denotes the weighted norm with the positive

definite matrix  S:||yl5=y"Sy, |yl5=»"y;
L,(T;) defines the set of square-integrable functions
determined at the interval T;; u;(-|a,h) denotes the

function wu;(-|a,b) =(u;(t|a,b),teT;) fromLy(T;).
2. PROBLEM STATEMENTS

In this section, we consider a terminal, linear,
control system with delay, subject to unknown but
bounded disturbances.

Let the dynamics of an object be defined by the
following differential equation:

2(t) = Az(t) + bu(t) + gw(t), t T =[0,¢,],
z(0)=zg, u(®)= u* (1), t<[0,h],

®)

rank(b, Ab,..., A" b) = n,

(6)
rank(g, Ag,.., A" 'g) =n.

Here, z(f)e R" denotes the state of the system,
u(t) e R denotes the control function at the time
instant where >0, h>0 is a parameter, and the
initial system state z, and initial control function

u"(f),te[0,h], are
w() = (w(r),t €[0,t,]) is an unknown disturbance
from a bounded set Q c L,[0,#,], which is defined

supposed to be known,

in a subsequent section, A€ R"",and b, ge R" are

given matrix and vectors.
Let:

2(t [, (), w, (D), £ €[0,8],

denote the state of the system (5) at the instant ¢,
which is generated by the control function
u,(-y=(u(s), s€[0,7]) and the disturbance w,(-)=

(w(s),s €]0,£]).

Suppose that time instants:
0= to < tl <...<fm <tm+1 :f*,
values ¢;,i=L..,m+1, and the terminal system

state z, € R” are given. We are interested in the
control function:

u() = (u(t)nt € [O:t* ])’
and the set of system states:
Y=V, s Vmb v €R"i=1..,m, (7)
such that the following relations are satistied:
1 2(t; |y (), () = 3; 15< 87, forallw, () eQ,
i=1,..,m, ®)
| 20 [y, (O, () =2, [5S Gy for all w,, () € Q.

The control function u()=u, () is said to be

feasible if the relations (8) are satisfied.

The quality of the control function is defined by the
cost function:

jo’ W (0)dr. 9)

Then, the problem may be approached in the
following manner:

Open-loop, worst-case approach: Find a control
function u(-) and system states (7) for which
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trajectories of the system (5) satisfy relations (8), and
for which the cost function (9) is a minimum.

This approach belongs to the second type of
approach mentioned in the introduction. In such an
approach, it is often the case that no feasible control
function u(-) exists. Stated crudely, in order to

ensure feasibility, the set of admissible disturbances
Q should be a “small” neighborhood of the zero

disturbance, and parameters &;, i=1,...,m+1, should
be “large”.

We can change the approach by including feedback.
To simplify calculations, we consider that:

t=ih, i=0,1...m, t,. =t,. (10)

Note that as arule: ¢,,,; # (m+1)h. We suppose that
a) At each (current) time instant ¢, 1<i<m, we
know the state:

2y = 20ty | O, () (1)

of the real-world system (5) at the previous instant
;1 =t; —h. Note that the state (11) is generated by

the control function U | (-) chosen at the instant

t; 1 and a realized admissible disturbance w, (). It

is natural to suppose that we also know the system
input u(z),t €[t;_;,#;) that was used at the previous
interval.

b) At the instant #, we may correct the future
control function using new information available at
this instant, i.e. the control function u(r),r €[1,,1,,,),
that will be applied to the real-world system at time
interval tzelt,4,,), is a function of a known state
z(t;,_;) of the real-world system and a known control
function u(t), t €[t;_;,t;) , constructed at the previous
instant ¢,_;.

Such a case may occur in the following case.
Suppose that at the instant ¢, ; the current state
z; 1 =2(t) system (5) is
measured by a sensor, which passes the information to
a controller that constructs a control input for the
system (5). It is supposed that the controller can
obtain and use this information with delay 4.

Here, we give a new mathematical approach to the
problem being investigated.

Closed-loop worst-case approach: Find a set of

system states (7) and construct a corresponding
control policy:

”(Y):(ui(’lZi—l’ui—l('))’izla""m)7 (12)

consisting of control functions:

i1z, i1 O) = @ (0 2w () 1 €T, (13)

of the real-world

where
i=1...,m,
z;—=1eR", u; 1 ()= (u; (1)t €T, 1) € Ly(T;y),

at each control interval T;=[t,1,), where
i=1,...,m, such that:
* The trajectory z(f) = z(¢| 7#(Y),w(-)),£ €[0,£,], of

the system:
3(0) = Az(t) + bu” (£) + gw(t),t €[0,1,), 2(0) = zg,
2(t) = Az(t) + buy (¢ | 2(4; = h),u; () + gw(®),  (14)
telt,tig)i=L...,m,

where

iy () = (g (01 2(t;_2)u; ()1 €Ty ), i=2,.0m;
uo () = (" (1),1 €[0, h]),

satisfies conditions:

"Z(ti [ (V) w; () — y; ”i < 51‘2,
for Vw;() e Q,i=1,...,m, (15)
|2 1 2, w() = 2] < 87 for V() € ©;

« the guaranteed value of the cost function:

JrE) = max Y [uf (¢t 20t )huiy (Dt (16)
w()eQ =1 T,

is the minimum value:

myin minJ(z(Y)).

where

2(tiy) = z( | i (X)), Wi (),
i (Y) = (us ( [ Zs1sUg (')),S = 1,'--,i - 2)’
w1 () =(m(0),¢ €[0,4,_1)).

Thus, instead of one control function in the open-
loop approach, we use a control policy (strategy) that
considers possible corrections in the future, based on
available information about real-world system
behavior.

Note that the dynamics of an object is defined by
system (14), which is a closed-loop system, where the
time delay 4> 0, in a state and control function.

The set (7) and control policy (12) that solve the
problem are called optimal, and are denoted by:

0 0 0, .0 ,
Y ={y s Vb vi €R"i=1,....m,

0
u) Clzi_,u () = @ (¢ 2,y w4 O)t € T),
i=1...,m,

zig €RY, u () = (O, €T € L (T;y).
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This approach belongs to the third type of approach
mentioned in the introduction. The solution to such

problems is not a fixed set ¥’ and a single, fixed
optimal control function #° 1), te[0,t,], but a fixed

set ¥" and a control policy 7° (YO) consisting of
control functions. For each i=1,...,m, the realized
value of control function u?(-@zi_l,u,-_l()) depends
onthe set Y, and on the realized state z{t 1) =24
of the system at the instants ¢=f,_; and a known
control u;_ () = (u;_1(t),t € T,_y).

We show that the class of feasible (guaranteed)
control functions can be essentially extended, if we
use a control policy (12) instead of one control
function u(r),7<[0,£,], for a given set of system
states Y.

Firstly, we introduce a class of admissible
disturbances . We define the set Q as follows:

Q:=w(): [ WA Odr < v, i=0ml, (17)

where the given values are: v; >0,i=1,..,m, v,
= >0. This choice of ellipsoidal uncertainty is

motivated by the fact that the expression (17) has been
shown to provide a good representation of uncer-
tainties arising in many real-world control problems
[12,15]. Moreover, the class of bounded disturbances:

W) S a, 1€]0,4,],
belongs to the class of admissible disturbances (17)
with the following choice of values for v, :

2 .
vi=ah i=1..m=-1 v, = o’ (1, — 1, +h).

It is clear that for an open-loop problem approach,
there exits an admissible control function if and only
ift

min min max max {
1

) 2 2
z{1; ThWwe t)) T - (S ,
u() ¥ w()eQi=l,..m+ A : M/{ti () e -y “2 !

i=1l..,m+1}<0,

(18)
with y,,.;:=2z,.
For i=2,...m+1, denote:
i 2
ye=max|| 1 Flngwadr3, (19)
w i-

st L” w2 (6)dt <v,_,, f 1 W2 (1)t < v,
h . T
0:= [ F(hOg(F(hn@) di, 1=V (O

F(t,r):=F()F (), where F()e R™" is the

solution to the equation F(r)= AF(r), F(0)=1.
From (6) it follows that: detQ =0, det Qs # 0.
From [7], we can show that the relations:

5;" 2y, i=L.,m+], (20)

are necessary and sufficient for the existence of a
feasible policy #(Y) (refer to (12)) satisfying (15).

Note that the relations (20) are significantly less
stringent than the relation (18) that guarantees the
existence of a feasible control in the open-loop, worst-
case approach.

For the sake of notational simplicity, we assume
that parameters &;,i=1,..,m+1, take the minimum
possible values, i.e. the equality in (20) is always
satisfied:

2

o7 =y, i=1..m+1. (21)

3. OPTIMAL CONTROL POLICY 7°(Y")

Here, where i=1,..m+1, at the interval
telt;,_,t;) we distinguish two systems:
The real-world (realized) system, subject to the

disturbance:

2(1) = Az(t) + bu;_ (1) + gw(?),

’ (22)
z(ti )=z, L et t),

and the nominal system (without the disturbance):

() = Ax(t) + bu] (1),

(23)
x(tiy) =z, t€ltig . h)

Suppose that the control function . (t),

telty.t), is fixed, Z; c R” denotes the set of all
system (22) states at the instant ¢; that are generated
by all admissible disturbances w(f),f {t,_4,f), and
x(#;) denotes states of the system (23) at the instant
L

Lemma 1: Define

Zi(x):={zeR": Hz _XHZO,I <vi} (24)
Then, the relation Z; = Z,(x(¢;)) is satisfied.

The Lemma is proved in [7].

For a fixed set of system states ¥, yg,... ¥,
Vel = 2., we consider the control policy 7(})

(12) with some control functions (13). From (21), the
policy is admissible if and only if the following
conditions are satisfied:
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* The first state y; has the given value:
i =x = F(t;,0)zy + j;‘ Ft, t)bu* (t)dt.

eForall i=1,...,m, the control function:
u(t)ziu O, t €Ty =[1,1,), (25)
changes the trajectory of the nominal system:
x(t) = Ax(t) + bu(z)
from the state:
X = x;(z; 1,11 ()

4 (26)
=F(t,t )z + L'_] F(t;,0)bu;_y (£)dt

at the instant #=¢;, to the fixed state y,, at the
instant f=1¢,,.
The latest condition can be expressed as follows:

yi+l=F(ti+1’ti)xi

2 27
b P bt |z O

Recall that the assumption is that at every time
instant ¢;,i=1,..,m, we know the system state
z; 1 =z(t; —h) at the previous instant f,_; =t -h
and the control function u,_{(¢),t €[t;_;,t;), that was
used at the previous interval, and we want to
determine the control function w;(¢),t €[t;,¢;,1), that
will be used at the next interval.

To derive the worst-case, optimal policy 7° 04 0)
we apply Bellman’s principle of optimality [2] and
dynamic programming.

Consider the real-world time instant ¢ =¢,,. Recall

that the assumption is that we know the real-world
system state z,_;, and the contro! function u,,_;(-)
and consequently we know the vector:

I
X = F(tyty 1)Zm 1 + J.t » F(t,,,0)buy, 1(t)dt. (28)

Recall the cost function (9); we conclude that where
i =m, we must choose the control function (25) such
that it minimizes the function:

[ 01 2yttt () (29)

m

subject to (27). It follows from classical results of
optimal control theory [14] that such a control
function has the form:

T
Uy, (t | Zm-1>Um-1 ()) = '//mF(th’t)bat € [tm7tm+1 )a
where

T T ~—-1
Ym = (ym+1 _Fm+1xm) Gm »

and i=m,...,1

&
Fiyy = Flt,t), G; = [ Fltyyy,0B(F (t3,0,000)" dlt,

1

., is defined in (28). The corresponding value
of function (29) can be expressed in the form:

and x

I Znts U1 (s Yus1)
= jm(xm (Zm—l sUpy ())7 Ym+1 )’

jm(xm ’ym+1) = “ym+1 B Fm+1xm )"é;zl ’

Suppose that the real-time instant is f7=¢,
1<i<m-1. Recall that the assumption is that we
know real-world system state z;_;, and control

function #;_;(-) and consequently we know the
vector x; defined in (26). Suppose also that at this
instant we know functions:

']i+1 (Zi7 U; (), Yis2s '“’ym+l)
= T (1 (258 ())s Viga oo Vi1 )-

We consider a control function u;(#),t€T;, such

that equality (27) is satisfied. The corresponding
guaranteed value of the cost function at the interval

[#;,t,] can be expressed as follows:

max iyl uIZ (t)df + '7”1 (F(fl'+1 ’ti )Zi
zeZ(x) i (30)

4
+ [ F .00 (), Yy, Vi)

Here, we consider that for any admissible distur-bance
w(t), teT;, the state of the realized system z; and
the state of the nominal system x; are related via
z; € Z;(x;), where Z;(x) is defined by (24).

Consequently, we must choose the control function
u;(-) such that it minimizes function (30), subject to
(27). Considering the last equality, we can express the
problem as follows:

'Ti(xi’yi+17"'7ym+l)

liv1
= min_ max [ [u7(t)dt (31)
u;(1)s.t. (27) z;€Z;(x;) hy

+‘7i+1 (F(ti,8:)0(2 = %)+ Yists Vizasreor Y1)

Based on classical results of optimal control theory
[14], we conclude that the control function that solves
the problem (31) can be expressed as follows:

T
Wtz ui () =v; Fti,0bt€lt,ti),

o (32)
Wi =i —Fux) Gy

and function J;(X;, ¥;41,--» Vms1) has the form:
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< 2
Ji s Vistseeos Ymst) =l Vot = FipaXi o (33)

+ max
sl _ySveis s=isl
o1

s=i+l,...,m

where d =z, | —x, 4, s=i+1,...m.

Function  J;(X;, Y141 Vnsy) and relations (31)

may be interpreted as Bellman’s function and
Bellman’s equation, respectively. Then, control
function (32) is the solution to Bellman’s equation.

Calculating the optimal control u,(-) recursively
where i=m,..,1, we find that for a fixed set of
system states Y ={y,..,»,} the best admissible

control policy z° (Y) consists
functions defined by the rules:

of the control

w(t]ziq,u, () = ‘//,'TF(fm,f)bJ elt;, ),

) (34)
i =01 = Fax) G i=1m;

y=x = F(t,0)z + jo’l F(t,0bu* ()dt, 59

X =Bz Y G 1, 0= 2,005 Yy = Za,

and the best guaranteed value of the cost function (16)
is equal to:

0 —_
J(7(Y)) :Jl(xl’y2""aymvym+l)
m-1

Dy —Fy - FoFd |

G71 s (36)
i=1 i

= max
HdiHQ—l <v;,

i=l,...,m—1

where dy=0,d;, =z, —x;, i=1..m-1, yy=x,
Ymil = Zx
Here, among all policies ﬂO(Y ) with control laws

(34), we choose a policy that minimizes the function
(36) over all sets Y. This implies the following
problem:

J( @Oy =p°

= min
y;eR"i=2,..m

j](x17y25""ymaym+1 ) (37)

Let ylo =3, yg yeees y?n be the solution to the problem

(37). 7°(r")denotes the policy (34) with y, = »9,
0

o Ym = Vs Ymal = Ze.

Hence, to construct the optimal policy 70 (Y O) we

must solve problem (37). We examine the problem
(37) more closely:

m
2
Z | You1 = Fyr Fod —Fays HG—l >

VO
z 2
= min - max Z“%’H —Fiayi _F;'HF;'diAl“G;l :
R 2
i=2,..m @

i=l,...,m-1
(38)
F=F,

1

Note that based on (10) it is true that:
G, =G,i=1..m, F,,=F.,G,, =G,

The problem (38) is a bilevel optimization problem
in the variables y; e R",
and d;eR",
general, such problems are non-convex and non-
smooth, and are assumed to be very difficult to
process. However, the special characteristics of
problem (38) enable us to derive an effective method

for its solution. These characteristics are investigated
and justified in the next sections.

i=2,..,m, (upper-level)

i=1,..,m-1, (lower-level). In

3.1. Algorithm for solving a bilevel problem
3.1.1 Auxiliary results

First, we formulate some auxiliary results that are
needed to understand the characteristics of the
problem (38).

The given parameters are: vectors a, be R”, non-
singular matrices 4 and BeR™”, and positive

definite matrices G, S, Qe R™", and a positive
number veR We

problems:

consider two optimization

7° = min max (||y + a”zG_l + “b —Ay— ABd”é*l ),

yeR" deR” (39)
2
s.t. “d“Q—I <y,
and
I* = min (,w +(b+ Aa) D(AYb + Aa)), (40)
A> Ay

T 7,,\! .
whereD(},):(S+AGA _KK /z) . K=ABM™,

O '=M"M, A =2, (K'SK).
First, note that by design, D(A) is a positive,
definite matrix, for all A> A4, (refer to Lemma 3 in

Appendix). Second, it seems that the two problems are
equivalent, in the following sense:

Lemma 2: The equality 1°=71" is satisfied.
Given an optimal solution AR to the problem
(40), a solution y° €R" to the problem (39) is

defined via:
30 =GaT DAY + da) - a. (41)

The lemma is proved in [7].
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3.1.2 Reducing a min-max problem (38) to a convex
mathematical programming problem

Consider again problem (38), and express it in the

following form:

0 .
Vi= min (S,(y3)
Vi,i=3,...,m
2
+ r%lax Z”J’Hl Fayi— i+1F;'di—1”Glfl)’
Il _y =
%]
i=2,...,m-1
(42)
where

Shr(13): —mln” ﬁnax (”y2 F2y1”G—1
a4

+|v3 = By, - FFd, ”?;2—1 )-

The application of Lemma 2 to S,(y;) implies that:
Sr(y3) = S;(J’3) ;

S5(y3)
. (43)
= min (4v + (33 + @) D)3 +ay)),
Az
where ay = F3a1, aq = _F2y1’ DO = Gfl .
_ K K _
Dy(4)=(G, +FDy'Ff — 32>
1

= Aax (K3 G5 K3, Ky = BF, M7

Substituting, using (43) in (42) yields:
V%= min (mm (v + (3 + @) D) (s +ay))

Yis Az
i=3,...,m
2
+ max Z”yZH l+1yl i+lF}di—1|IGl_—1)
I ” _13"1’ i=3
i= 2,A..,m -1
= min min (S3 (y4,/11) +11V1

ﬂ'l zu Y i=4,...,m

2
+  max ZH)’;H Finyi - z'+1Fidi-1”G;1),
I -y <vini=a
(2
i=3,...,m-1
(44)

where i=3,...,m,

S;Vists Ass i)

=min  max Mﬁ%fﬂd%w#ﬂ

i " 1" _1SVi-

(v + 1)+ Vit = Frayi — FraFdi “2;;1 )-

Here, where i=3,..,m, a, =F_0a_, K; =
-1
F;'HF;‘M ’
Dy (Ao A y)
-1
K.kT
=| G; + Fry Dy 5 (A Ay g )y — =
Aia

The application of Lemma 2 to S3(y4,4) implies
that: S3(y4,ll) = S;(y4,/11) . where i= 3,...,m ,

87 Dt Ay dip) 1= min (A_yvi
Aim12Hi
+ia1 + ) Doy (A A )it + @),
i = Amax (K] G7'K).

Substltutlng, using 83 (v4,4) in (44), and recur-
sively applying Lemma 2 m—2 times, yields an

expression for yo.

V' = min.. min

S Ay Ay o). (45
min.. min ' Vmals Aoeos A2 ). (45)

The application of Lemma 2 to S,,,(¥,,,41, 4>+

sAm—2)
implies that:
Sm (ym+1’)“1""’/1m—2) = S:n (ym+1’/11""’ﬂ’m—2)a (46)

and

¥ =min.. min (Z Av;

A2 A2 i1
+(ym+1 +am) Dm—l (ﬂ'l"“’ﬂ'm—l )(ym+1 T am ))

Consequently, the problem (45) can be expressed in
the form:

v = lmm F(A), st. A2 pu, 47)
Rl

where  f(A):=v'A+c D, (4, Ay 1)c,  the

given vectors are: u= (,ul,...,,um_l)T, V=V

Vit Y, e= (24, 2,u" ()) = 24 = Fpp 1 Frp o By (2,

u"()) and x =x(zp,u" () is defined as in (35).
Remark 1: Note that from (10):
F=Fh,0)=F,i=1.,mG;=G,i=0

Dy (A5 A1)
i+l =l i (s )T
:[Z:FS_IGFS_1 —Z———F %: },i=2,...,m,

s —1,

s=1 s=1

and consequently, s =const, i=1,.,m—1.
Proposition 1: The function f(1) is continuous

and convexat A={AeR™: 41> u.
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Proof: The proposition is implied by Lemma 3 and
Lemma 4 (refer to Appendix), where S(1)=
D, (1), C=c and r=1.

Obviously, the cost function of the problem (47) is
bounded. Hence, the problem (47) has a solution that

can be found by standard methods of convex
programming.

3.1.3 Constructing the optimal solution Y°
Here, we show the means of obtaining a solution

Y° :{yl0 =y1,y(2),...,y9n} to problem (38) using a
solution, e.g., A0 = (/110,...,/1,(,),“1), to problem (47).

The application of Lemma 2 to two equivalent
problems implies that:

S D13 A vves Ay ),
(refer to (46)):

0 -1 0 0 0 0
Yin :Dm—Z(ﬂ“l ""’ﬂ“m72)Fm+1Dm—l(ll !'”9/1m71)

* 0 0
Sm(ym+l’ﬂ’l 7"'ﬂlm—2)

0 0
XVl + Fop1Ga1) = Qs Vst = Ze.
Then, where i=m—1,..,2, we recursively apply

Lemma 2 to equivalent problems Sl-(y?H, /110,...,
A22), ST (A AL ,) , and compute the vector

0 _ =1 .40 0 0 0
Vi =D (A A D (A, A7)

o (48)
X(Vipt +Fia ) —a; .

Based on vectors (48), we construct the optimal
control policy 7Z'O(Y0) by the rules (34), where

Vi, i=L,...,m, arereplaced with y?,i =1,...,m

3.2. Properties of proposed optimal control policy
7° Y 0) and generalization

Summarizing the aforementioned results, we state the
following proposition.
Proposition 2: For any admissible disturbance

w(-) € Q, the policy 7’ 04 0) guarantees that:

* The initial state z; of the realized system (22) is
directed towards the J,,,; -neighborhood of the given
terminal state z, in m—1 steps;

eForall i=1,..,m, thestate z(s;) of the realized

system (5) at the instant ¢ is in the &, -

i
neighborhood of the fixed (found) state le ,

* The value of the cost function for the realized
control function does not exceed ¥,

« The estimate V°, is the optimal, guaranteed
value of the cost function.

We constructed the optimal set Y° and optimal
control policy based on the assumption that in system

(5) the initial system state z, and control function
u(t), t €[ty,4], which is used until the time delay, are

given. Here, we show that this assumption is not
onerous, and the proposed approach can be easily
applied to more general practical cases.

Suppose that in dynamic system (5):

*» Control function u(¢), f €[ty,4] is not fixed and
can be arbitrary,

* In the starting instant 7, =0, the initial system

state z; is not known exactly, but it is known that:
2
29 € Zy(xp)={zeR":|z ’"’COHQO—I <vo}s (49)

where the given parameters are: vector x;e€R”,

QO c Rnxn ,

v =2 0. In such a case, for a fixed set ¥ of system

positive defined matrix and value

states (refer to (7)), the control policy ﬂO(Y )
consists of control functions:

ug (-1 x0 ) 1, (| g4 ()i = 1,.com. (50)
As before, the last control functions have the form

(32), where x; is defined in (26). Control function

uy(:| xg) in the first interval has a similar form:

o (t | x0) = Wi F(1y,0b,1 €t,1)),

o (51)
o= —Fx) G s

where x; is a given, based on an assumption. In
relations (36), function Jy (X[, V3,0 Vs Vriq) 1S
replaced by function Jy(Xg, Viseeer Yy Vipey) that is
defined as before by (33), where i=0 and Q=0,,

where s=1. All other arguments and constructions
are completely the same as before, with the only

difference being that min is replaced by
Yii=2,..,m

min . As a result, the

optimal  set
Yisi=l...,m

& ={yf) yeees y?n} can be found. In the first control

interval we use control function (51) where y, = ylo .
Where i=1..m, in the interval [7,7,,) we use
control function (32) where y,;= y?H and the
vector x; = Fiz; | + Gy, that is known in the
instant ;.

Note that the equality vy =0 in (49) implies the
case where the initial system state z, is known

exactly, in the starting instant £, .
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4. OTHER TYPES OF CONTROL POLICIES

To illustrate the good performance of the proposed
approximative control policy 7° 04 O) we compare it
with other reasonable control policies. In this section
we briefly describe two other control policies.

In the proposed policies we can correct future
control functions at the current instant ¢, on the basis

of information that is available at this instant. The
information is the same as that used for construction

of the policy IZ'O(Y 0) . However, in the policy
7° (Y 0) at the instant # we perform the correction

based on the fact that we can correct the control
function at future instants ¢,,,..., 7, , on the basis of

new information that will be available at these instants.

In the policies described in this section, which are
based on the principles of classical feedback, we do
not consider the fact that more information about
states becomes available as time advances.

In the next section, we compare the characteristics
of these policies with numerical examples.

4.1. Control policy based on classical feedback
Consider a realized time instant#; . Recall that the

assumption is that we know the system statez;_; at
the previous time instant #;_; =¢, —/ and the control
function u"(¢),€[t,_;,%;). Hence we know the state:
x; = x(t;) = Fz,_, + f” F(t,0bu’ (t)dt (52)
i-1
of the nominal system (23) at t=¢, We compute a
control function u(¢),f €[t;,2,], which changes the
state of the nominal system (23) from the state x; at
the time instant #;, to the given state z, at the
instant ¢, , and minimizes the cost function:
ts .
L u? (1)dt — min.
i
This optimal control function is given by:
7t %) =y ()F(t,,0b,1 €[1;,1,) (53)
T T =-1
vi (x;)=(z. —F(t..5)%,)" Gy >

I* ’ 54
Gi= L. F(t,,Hb(F(t,,0)b) dt. Y

This control function is applied to the realized system
at the interval [#;,f,,;), which changes the realized

(perturbed) system to the state z;,; at the instant
liyr:

Zis1 =X t _I:_HI F(t;,1,0)gw(t)dr.

12

Here, x;,1 = X(t;41) = Fz; + GFLy; (%), Fy = F(t1;).

At the instant #;,; we correct the control function
by the rules (52)-(54), using the new, known state z;
of the real-world system at f=¢ and the new,
known position (#;,;,x;,;) of the nominal system.
This process can be continued. As a result, we obtain
a policy of type (12):

7 =@ 2w a0, =1, m) (55)
with the control functions (13):

ui(1zi1,mi10))

= (l_ll(t ' xi) = (Z* - F;'xi)T él_lF(t*’t)b7 re [tiati+] ))7

x;=Fz, 1 + GF,-T vi1(xi_g)i=1...m,

z; 1 =2(t;;) is a known state of the real-world
system (5) at the instant #,_;.
The (guaranteed) value of the cost function (16) of
the policy 7 is equal to:
J(7r) = max J(z,w()),
w(-)e

J@wO) = [ adt|zi.710)
i=] !

where z;, y =z(f;_;|7,w,_ () is the state of the

real-world system at the instant #,_; generated by
control policy 7 and a realized admissible
disturbance W, ).

The described policy 7 is reasonable, but it is not
feasible for our problem: we cannot find a set

Y ={y,...,¥,} such that relations (8) are satisfied for
the policy 7 .

4.2. Control policy 7° ")
Here, we construct a control policy 7° @)

consisting of control functions (34), where ¥ =Y".
The set of system states Y* ={yy,...,y,} is defined

by the following "reasonable" rules y; =x*(tl~),

i=1,.,m. Here, u"() and x"() are the optimal
program control function and the corresponding
trajectory of the problem, respectively:

j; u>()dt — min, 1(f) = Ax(?) + bu(?),

X(O) =2y, u(t) = ll* (t):t € [07t1 )a X(f*) = Zy.
We obtain the latest problem if we use w(r)=0,

t €]0,¢,.], in the original problem (5). Policy 70 )
consists of control functions that are constructed by
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the rules (34), where y,,i=1,...,m, are replaced with
y;k,izl,...,m.

It is clear that the policy 7° (Y*) is (guaranteed)
feasible. However it is not optimal: J (7[0 Y 0 RS

J(7° (Y.

5. NUMERICAL EXPERIMENTS
In this section, we present the results of a numerical
comparison of the policies suggested in this paper. In
our numerical experiments, we consider a dynamic
system (5) where % =6.6,
0

(56)

'

Il
o o o ©
o - o @

o O o -

-1

p'=(1,2,0,1), g’ %-2,0.1,05,-2), z} =(1,-13,3),
u'(t)=0,t[0,h), m=5, n=4, zI =(-8,-6,1,0),
2 =(-8,-6,1,0,  1,=0,4,=66 =132,
t;=19.8, 1, =264, =33, tc=t, =40.

The corresponding set of admissible disturbances
Q is defined via (17), where:

vi=a(t,— 1), i=1..,m+], witha=1/4. (57)
Recall that the class of bounded disturbances:
W) |<a,teT,

belongs to the set of admissible disturbances.
It is rather difficult to calculate values

Visi=2,..,m, by rules (19), but we can obtain
estimates, where 7 ,>y;,i=2,..,m. In the example it
is true that:

n=282,y,=528, y,=528,

74=528, y5=528, y,=5.23.

We construct a convex problem (47) with m-1=4
variables, and find its optimal solution A° = (40, 4,
/1§’ ,/12) and the corresponding optimal value
70 =17.19.

We obtain the set ¥ = {yl0 , yg , yg , yg, yg } using
the solution A°. To this end, starting from yg =2z,
we recursively compute y,-0 according to (48), where
i=5,43,2, andfind y =y by (35).

Based on this set we construct the optimal control
policy z°(r") by the rules (34), where y,,i=1,

...,5, are replaced with y?,i =1,...,5.

The realized values of the control functions
ul () 2(ty), w1 (), €T, i=1,..,m, will depend on
the realized disturbances, because real-world system
z(t; —hy=z(t; = | 20 (Y0, W, (), i =2,

m, do depend on w;_;()=w, (). The correspond-

states

ing value of the cost function is denoted by:
J(w):=J (2" (), ()

=3 @@ 2 12 @), w Ol ) dr

i=1 T;

Then, for all admissible disturbances w(-) it is

true that: J(w)£V0:17.19. It easy to construct

admissible disturbances w,(-) such that J(w,)

=y0,
Table 1 presents, for different admissible
disturbances w(-), values of cost functions J(w)

and deviations of real-world system states z; =
Z(li|ﬂ0(Y0),W[i(-)) from designed states y?,izl,

.25, and yg =2z,.

The results of the numerical experiments show that
the constructed policy 7° (YO) for all i=1,..,m+1
guarantees that the state z(7;) of the realized system
(5) at the instant #; isinthe &; -neighborhood of the

fixed (found) state le , and the value of the cost
function for the realized control function does not
exceed V% =17.19.

For comparison, we constructed the admissible
policy 70 (Y *) by the rules described in Section 4.2.

This control policy 7#°(Y") is admissible, but not
optimal: the guaranteed value of the cost function is
equal to J(ﬂo (Y*))=25.01.

Here, we show that, in this example, the control
policy constructed on the basis of classical feedback is
not admissible, because this strategy does not
guarantee that the intermediate constraints are
satisfied (8).

We continued the numerical experiment with data (56),
(57) and constructed two admissible disturbances
wi () and w,() by the rules: w,() =o' F(t,,0)g,

teT, i=1,.,6, where ¢} ¢R":

(¢},i=1,..,6)



856 Kil To Chong, Olga Kostyukova, and Mariya Kurdina

0.0847
0.1367

0.3635 0.1132
0.2866 0.0808
0.1508 0.1347 0.0356
0.1511  0.074 0.0189
(97 ,i=1,...,6)

~0.1021 -0.1065
0.0056  0.007
~0.0812  —0.0965
~0.0789 —0.0513

0.0945

0.0378

0.0057
-0.0019

>

S O O O
o O O O

-0.1194 -0.1256 0
0.0137 0.024 0
-0.0897 -0.0813 0
-0.0186 0.0057 0

o O O O

For s=1,2, denotes the trajectory generated by
control policy 7 and admissible disturbance w,(-),
and z} =z°(%,), i=1,..,6.

Table 2 contains information about deviations of
trajectories at the instants #;,i=1,...,6.

It is clear that the deviations z' (t) of 2?2 (t),teT,
at the instants #; and #, are greater than 27, and
2y 4, respectively. Consequently, in this example, it is
impossible to find y; and y, such that relations

(8) are satisfied. Hence, a control policy based on
classical feedback is not admissible.

6. CONCLUSION

The proposed policy has several applications for
Model Predictive Control of time-varying systems
with delay and uncertainties (e.g., refer to [8]): in
moving horizon style or shrinking horizon style. In the
first case, one should solve a problem of type (47) for

any initial system state zy=z(7—h), and control
function #*(-)= (u"(¢t),t €[t —h,7]) and, depending
on its solution, construct a control function only at the
first control interval T =[7z, 7+ h]. Here 7 is the
z(t—h)

system state at the instant 7—%; u”(t), te[r—h, 7],

current time instant; is the real-world

is the control function that was applied to the real-
world system during time interval [z — A, 7].

In shrinking horizon style, at every current instant
t; with a known system state z(#; ;) and control
function u; (¢),t €T, ;, we should solve a problem
of type (47)

m—1
VP=min .. min (3 Av (58)
! Azpp Apy1Zthy é e

Gt + A1)’ Dopi Bieees Ay ) ) Fnat + i)

Table 1. Values of cost functionals J(w)and deviations of real system states z; from constructed states

y? ,i=1, ...6, for different admissible disturbances w(-).

w() J(w) 2=k | Iz2=03 0 | Izs=331h | lza =380 | Nzs—381k | Nzs—zIh
Wi () 17.19 2.40 4.75 4.74 4.69 4.70 4.55
0 2.68 0 0 0 0 0 0
acos(t?) 2.78 0.43 0.39 0.03 0.02 0.01 0.01
asin(?) 2.76 0.37 0.37 0.05 0.01 0.01 0.01
a 3.54 2.77 4.45 4.45 4.45 4.45 4.53
-a 2.25 2.77 4.45 4.45 4.45 4.45 4.53
acos(?) 9.14 1.78 3.54 347 3.38 3.30 3.31
—acos(?) 7.98 1.78 3.54 3.47 338 3.30 3.31
asin{t) 8.88 1.63 3.29 3.36 3.45 3.53 3.73
—asin(t) 5.43 1.63 3.29 3.36 3.45 3.53 3.73
asin(\f) 2.94 2.27 1.48 2.36 4.03 3.62 1.83
—asin(1) 3.03 2.27 1.48 2.36 4.03 3.62 1.83
acos(\) 2.95 1.04 3.15 3.20 0.89 2.14 3.91
—acos(t) 3.57 227 1.48 2.36 4.03 3.62 1.83
Table 2. Deviations of the trajectories z°(¢), 1€ T, s=1,2, atthe moments t,i=1..,6.
Il == I 1223 I 123 -2 Iip lIz5 =23 I 124 22 1l 126 - 25 Ilp
5.27 9.75 13.37 14.58 7.34 0
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with respect to decision variables 4,...,4,, ;. Here,
for s=i+1...,m, a;,=Fa,, a;=-F_y;,

4
¥ = Pt e+ ||| F g 0bu (0t

Depending on the solution to the problem (38), we
construct a control policy at the interval [7,#,] and

only use the first control function from the policy at
the next control interval 7.

Several other policies are considered in [8] (also,
refer to the references in ([8]). There, the main
assumption is that the control laws that define the
policy are expressed via given functions with
unknown parameters. Parameters of these functions
are chosen in an “optimal” manner according to a cost

function. The policy 7’ (YO) can be interpreted

similarly: we may make the assumption that the
control functions that define the policy are expressed

via given functions (34) with unknown parameters
y,eR"i=1.,m and we try to choose the

parameters in an optimal manner according to (38).
However, in this paper, we introduced this policy
based on another principle: we did not make any
assumptions that control functions are predetermined
functions with unknown parameters, but we showed

that the policy #°(Y°) is optimal for the
optimization problem being considered.

APPENDIX A
Lemma 3: Let S,4eR™" be positive defined
matrices and let K € R™" be a nonsingular matrix.
Then, the matrix D(4) :cS+A—5§—T is positive,
defined forall A2 4, :=A_, (K" STIK).

Proof: We prove that the matrix D(A):= S ~5§j~
is semi-positive, defined forall 42> /4,.

It is clear that the matrix D(A) is semi-positive,
defined if and only if the  matrix
D(A)=K'Sk™T — 11 is semi-positive. It is well
known (refer to [11]) that the matrix D(A) is semi-
positive defined if and only if A ;, (KflSK‘T)Z%

or equivalently A=A, (K Ts7K). Hence, we
prove that, for 1> A,., the matrix D(A) is semi-
positive defined.

Based on the fact that D(1) = 4+ D(A), where the

matrix A is positive defined, we conclude that the
matrix D(A) is positive defined forall 12> 4,.

Lemma 4: Consider the matrix function S(A)

k
:(A-Zﬁ), A=(Jypnlg) €A, where the
P
matrices 4, B;, i=1,..,k, are positive defined, and
the set Ach is convex. Assume that S(1) is

positive definite for all A< A. Then, the function
A (CTSTHAC) s
CeR™, rank C=r.

Proof: We use known results (refer to {11]) in the
following:

convex at A. Here

[£2:9¢3 al’ld

rank C=r , the following

For any positive defined matrices 4,B€R

a matrix CeR™,
relations are satisfied:

ﬂmax (A) = l/j“min (A—l )s
Anin (A + B) 2 Ay, (A), (A1)
[T+ et z(ctalert +[cTBeT

Since Apay (CTS 1 (A)C) =1 Amin (TS (A)CT)
we prove the convexity of the function
Armnax (CTK1 (A)C) at A by showing the concavity
of the g(A) = A (CTSTHACT D,
Consider the matrix:

function

B;

k
S(ax+(1-a)y) :A_ZM’ (A2)

i=1
x,yeAael0l1]
a l-a

1
Using the inequality e € e
sng e ey (- a b

for all a>0,h>0,€[0,1], we may express the
matrix (A2) in the form:

Slax+(1-a)y)
k B. k B. k
=a(d-Y Dy +(-a)4-). =)+ D B (A3)

=aS(x)+(1-a)S(y)+ B,
where 3,20, i=1,..,k, are values and the matrix
B= Zle B;B; is semi-positive defined. The

concavity of the function g(4),A< A, follows from
the inequalities (A1) and the expression (A3)

glax+(1-a)y)
= in (CT 87 ax + A= c)p)CT™)
= As (CT (@S(x) +(1-a)S(y)+ B) 'CT™h)

> ad o [CT ST CT ! + (1= @) A [CT S ()CT
=aq(x)+(1-a)q(y)
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