• Title/Summary/Keyword: state constraint

Search Result 336, Processing Time 0.019 seconds

Comparison of Shear Strength Characteristics of Unsaturated Soil From Triaxial Compression Tests with Direct Shear Tests (삼축시험과 직접전단시험에 의한 불포화토의 전단특성 비교)

  • Hwang, Hui-Seok;Choi, Young-Nam;Park, Byung-Soo;Yoo, Nam-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.63-69
    • /
    • 2016
  • In this paper, shear strength characteristics of an unsaturated soil were compared using triaxial compression tests(CD) and modified direct shear tests and thus feasibility of the newly modified direct shear testing apparatus was confirmed. The shear strength tests of unsaturated state with a soil sample, obtained from a slope where debris flow occurred at Yangpyeong in Kyeunggi province during 2010, were performed. Both tests showed a linear relationship of matric suction with the shear strength under low level of matric suction. The apparent cohesion of the unsaturated soil was also increased linearly with increase of matric suction. As results of comparing two different testing apparatus, estimated values of shear strength parameters of unsaturated soil($c^{\prime}$, ${\phi}^b$) were slightly larger in the modified direct shear tests due to constraint effect of shear box.

Offline In-Hand 3D Modeling System Using Automatic Hand Removal and Improved Registration Method (자동 손 제거와 개선된 정합방법을 이용한 오프라인 인 핸드 3D 모델링 시스템)

  • Kang, Junseok;Yang, Hyeonseok;Lim, Hwasup;Ahn, Sang Chul
    • Journal of the HCI Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.13-23
    • /
    • 2017
  • In this paper, we propose a new in-hand 3D modeling system that improves user convenience. Since traditional modeling systems are inconvenient to use, an in-hand modeling system has been studied, where an object is handled by hand. However, there is also a problem that it requires additional equipment or specific constraints to remove hands for good modeling. In this paper, we propose a contact state change detection algorithm for automatic hand removal and improved ICP algorithm that enables outlier handling and additionally uses color for accurate registration. The proposed algorithm enables accurate modeling without additional equipment or any constraints. Through experiments using real data, we show that it is possible to accomplish accurate modeling under the general conditions without any constraint by using the proposed system.

An Adaptive Viterbi Decoder Architecture Using Reduced State Transition Paths (감소된 상태천이 경로를 이용한 적응 비터비 복호기의 구조)

  • Ko, Hyoungmin;Cho, Won-Kyung;Kim, Jinsang
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.2
    • /
    • pp.190-196
    • /
    • 2004
  • The development of a new hardware structure which can implement the viterbi algorithm efficiently is required for applications such as a software radio because the viterbi algorithm, which is an error correction code function for the second and the third generation of mobile communication, needs a lot of arithmetic operations. The length of K in the viterbi algorithm different from each standard, for examples, K=7 in case of IS-95 standard and GSM standard, and K=9 in case of WCDMA and CDMA2000. In this paper, we propose a new hardware structure of an adaptive viterbi decoder which can decode the constraint length in K=3~9 and the data rate in 1/2 ~ 1/3. Prototyping results targeted to Altera Cyclon EPIC20F400C8, shows that the proposed hardware structure needs maximum 19,276 logic elements and power dissipation of 222.6 mW.

  • PDF

Axial capacity of reactive powder concrete filled steel tube columns with two load conditions

  • Wang, Qiuwei;Shi, Qingxuan;Xu, Zhaodong;He, Hanxin
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.13-25
    • /
    • 2019
  • Reactive powder concrete (RPC) is a type of ultra-high strength concrete that has a relatively high brittleness. However, its ductility can be improved by confinement, and the use of RPC in composite RPC filled steel tube columns has become an important subject of research in recent years. This paper aims to present an experimental study of axial capacity calculation of RPC filled circular steel tube columns. Twenty short columns under axial compression were tested and information on their failure patterns, deformation performance, confinement mechanism and load capacity were presented. The effects of load conditions, diameter-thickness ratio and compressive strength of RPC on the axial behavior were further discussed. The experimental results show that: (1) specimens display drum-shaped failure or shear failure respectively with different confinement coefficients, and the load capacity of most specimens increases after the peak load; (2) the steel tube only provides lateral confinement in the elastic-plastic stage for fully loaded specimens, while the confinement effect from steel tube initials at the set of loading for partially loaded specimens; (3) confinement increases the load capacity of specimens by 3% to 38%, and this increase is more pronounced as the confinement coefficient becomes larger; (4) the residual capacity-to-ultimate capacity ratio is larger than 0.75 for test specimens, thus identifying the composite columns have good ductility. The working mechanism and force model of the composite columns were analyzed, and based on the twin-shear unified strength theory, calculation methods of axial capacity for columns with two load conditions were established.

PGA: An Efficient Adaptive Traffic Signal Timing Optimization Scheme Using Actor-Critic Reinforcement Learning Algorithm

  • Shen, Si;Shen, Guojiang;Shen, Yang;Liu, Duanyang;Yang, Xi;Kong, Xiangjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4268-4289
    • /
    • 2020
  • Advanced traffic signal timing method plays very important role in reducing road congestion and air pollution. Reinforcement learning is considered as superior approach to build traffic light timing scheme by many recent studies. It fulfills real adaptive control by the means of taking real-time traffic information as state, and adjusting traffic light scheme as action. However, existing works behave inefficient in complex intersections and they are lack of feasibility because most of them adopt traffic light scheme whose phase sequence is flexible. To address these issues, a novel adaptive traffic signal timing scheme is proposed. It's based on actor-critic reinforcement learning algorithm, and advanced techniques proximal policy optimization and generalized advantage estimation are integrated. In particular, a new kind of reward function and a simplified form of state representation are carefully defined, and they facilitate to improve the learning efficiency and reduce the computational complexity, respectively. Meanwhile, a fixed phase sequence signal scheme is derived, and constraint on the variations of successive phase durations is introduced, which enhances its feasibility and robustness in field applications. The proposed scheme is verified through field-data-based experiments in both medium and high traffic density scenarios. Simulation results exhibit remarkable improvement in traffic performance as well as the learning efficiency comparing with the existing reinforcement learning-based methods such as 3DQN and DDQN.

A Control Algorithm Suitable for High-speed Response Battery Charging System for Elevator Car (승강기 Car용 고속응성 배터리 충전시스템에 적합한 제어알고리즘)

  • Lee, Jung-Hwan;Hwangbo, Chan;Park, Sung-Jun;Park, Seong-Mi;Ko, Jae-Ha
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1071-1081
    • /
    • 2022
  • As the demand for high-rise buildings increases, the demand for high-speed elevators is also increasing. In order to make a high-speed elevator, a method is needed to reduce the weight of the elevator's components, which is a constraint on the increase in speed. As a measure to reduce the weight, it is possible to remove the traveling cable for power and signal supply. Since the weight of the traveling cable varies depending on the position of the carriage, it is difficult to compensate the weight using the counter weight. The power supply is a structure in which a brush-rail type power input terminal is installed in the elevator hoistway to receive power in a contact-type manner while the carriage is moving. If a small-capacity ESS is installed in a passenger car, power can be supplied uninterruptedly inside the passenger car. A small-capacity ESS charging system to be applied to such an elevator system is required to perform several functions. First, the passenger Car must be able to charge as much as possible even during high-speed operation. A control algorithm with high responsiveness is required because charging starts and ends repeatedly by the partially installed input power stage. In addition, if the input-side line impedance is large due to the structure of the system and the response characteristic is increased, the stability of the system may be lowered. Accordingly, in this paper, we propose a control algorithm that has a stable steady-state output while having a fast response in a transient state. To verify the proposed control algorithm, simulation was conducted using PSIM, and the performance of the controller was verified by manufacturing a prototype buck conveter charger.

Estimation of Pull-out force by using modified Direct Shear Apparatus (개설된 직접전단시험기(CNS)를 이용한 보강재의 인발력 추정)

  • 유병선;이학무;장기태;한희수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.145-154
    • /
    • 2003
  • When a nail pulled out in dense, granular soil, the soil in the vicinity of the nail tends to dilate, but its dilatancy results in a normal stress concentration at the soil/nail interface, thereby increasing the pull-out resistance of the inclusion. It is thought to be occurring within the resistance zone where the soil mass is at stationary state and the reinforcement are held in position by the soil, due to the friction or bond. In this paper, A series of direct shear and interface tests were conducted by using so called‘Constant Normal Stiffness Test Apparatus’which was modified and improved from the conventional direct shear box test rig. Unlikely the normal shear box test, this enables to simulate the different constraint effects of surrounding soil during shear under the conditions of constant stress and volume, constant normal stiffness. The aim of the research programme is to get better understanding of pull-out bond mechanism, thus to explore the possibility of evaluating the pull-out bond capacity of soil/reinforcement at the preliminary design stage from the laboratory test.

  • PDF

Practical Use Technology for Robot Control in BCI Environment based on Motor Imagery-P300 (동작 상상-P300 기반 BCI 환경에서의 로봇 제어 실용화 기술)

  • Kim, Yong-Honn;Ko, Kwang-Eun;Park, Seung-Min;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.227-232
    • /
    • 2013
  • BCI (Brain Computer Interface) is technology to control external devices by measuring the brain activity, such as electroencephalogram (EEG), so that handicapped people communicate with environment physically using the technology. Among them, EEG is widely used in various fields, especially robot agent control by using several signal response characteristics, such as P300, SSVEP (Steady-State Visually Evoked Potential) and motor imagery. However, in order to control the robot agent without any constraint and precisely, it should take advantage of not only a signal response characteristic, but also combination. In this paper, we try to use the fusion of motor imagery and P300 from EEG for practical use of robot control in BCI environment. The results of experiments are confirmed that the recognition rate decreases compared with the case of using one kind of features, whereas it is able to classify each both characteristics and the practical use technology based on mobile robot and wireless BCI measurement system is implemented.

Performance Analysis of Space-time Coded MIMO System with Discrete-rate Adaptive Modulation in Ricean Fading Channels

  • Yu, Xiangbin;Rui, Yun;Yin, Xin;Chen, Xiaomin;Li, Mingqi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2493-2508
    • /
    • 2012
  • The performance of a MIMO system with adaptive modulation (AM) and space-time coding over Ricean fading channels for perfect and imperfect channel state information (CSI) is presented. The fading gain value is partitioned into a number of regions by which the modulation is adapted according to the region the fading gain falls in. Under a target bit error rate (BER) constraint, the switching thresholds for AM are given. Based on these results, we derive the calculation formulae of the theoretical spectrum efficiency (SE) and average BER. As a result, closed-form SE expression and accurate BER expression are respectively obtained. Besides, using the approximation of complementary error function, a tightly closed-form approximation of average BER is also derived to simplify the calculation of accurate theoretical BER. Computer simulation shows that the theoretical SE and BER are in good agreement with the corresponding simulation, and the approximate BER is also close to the accurate one. The results show that the AM scheme in Ricean fading channel provides better SE than that in Rayleigh fading channel due to the direct-path propagation, and has performance degradation in SE and BER for imperfect CSI.

Low-Rank Representation-Based Image Super-Resolution Reconstruction with Edge-Preserving

  • Gao, Rui;Cheng, Deqiang;Yao, Jie;Chen, Liangliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3745-3761
    • /
    • 2020
  • Low-rank representation methods already achieve many applications in the image reconstruction. However, for high-gradient image patches with rich texture details and strong edge information, it is difficult to find sufficient similar patches. Existing low-rank representation methods usually destroy image critical details and fail to preserve edge structure. In order to promote the performance, a new representation-based image super-resolution reconstruction method is proposed, which combines gradient domain guided image filter with the structure-constrained low-rank representation so as to enhance image details as well as reveal the intrinsic structure of an input image. Firstly, we extract the gradient domain guided filter of each atom in high resolution dictionary in order to acquire high-frequency prior information. Secondly, this prior information is taken as a structure constraint and introduced into the low-rank representation framework to develop a new model so as to maintain the edges of reconstructed image. Thirdly, the approximate optimal solution of the model is solved through alternating direction method of multipliers. After that, experiments are performed and results show that the proposed algorithm has higher performances than conventional state-of-the-art algorithms in both quantitative and qualitative aspects.