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Abstract 
 

Low-rank representation methods already achieve many applications in the image 
reconstruction. However, for high-gradient image patches with rich texture details and strong 
edge information, it is difficult to find sufficient similar patches. Existing low-rank 
representation methods usually destroy image critical details and fail to preserve edge 
structure. In order to promote the performance, a new representation-based image 
super-resolution reconstruction method is proposed, which combines gradient domain guided 
image filter with the structure-constrained low-rank representation so as to enhance image 
details as well as reveal the intrinsic structure of an input image. Firstly, we extract the 
gradient domain guided filter of each atom in high resolution dictionary in order to acquire 
high-frequency prior information. Secondly, this prior information is taken as a structure 
constraint and introduced into the low-rank representation framework to develop a new 
model so as to maintain the edges of reconstructed image. Thirdly, the approximate optimal 
solution of the model is solved through alternating direction method of multipliers. After that, 
experiments are performed and results show that the proposed algorithm has higher 
performances than conventional state-of-the-art algorithms in both quantitative and 
qualitative aspects. 
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1. Introduction 

The high resolution (HR) images contain more critical information and rich details, which 
are widely applied in smart phone camera, remote sensing and object detection. However, 
since the limitation of camera and the influence of external imaging environment, the 
resulting images may lose some critical details and the image resolution is lower. Single 
image super-resolution (SISR) methods, as an effective image processing technology, can 
produce an excellent HR image from an observed low-resolution (LR) image. In recent years, 
SISR has become an active topic. Many researchers study various reconstruction methods. 
The existing methods may generally be classified into three types: interpolation-based 
approaches [1,2], reconstructed-based approaches [3-11], and learning-based approaches 
[12-20]. From the perspective of the quality and the speed of the reconstructed image, 
learning-based approaches reveal their prominent advantages in all SR reconstruction 
methods. Therefore, in this paper, we focus on the learning-based approaches.  

Learning-based or example-based SR methods utilize a learned database consisting of LR 
and HR image patch pairs to derive the mapping between LR and HR feature spaces, 
estimating the HR image [21]. According to the establishment of mapping relationship, 
typical example learning-based SR methods mainly include manifold learning-based 
approaches [14, 22-24], example regression-based approaches [17, 18, 25], deep 
learning-based approaches [26-28] as well as sparse representation-based approaches [13, 15, 
29, 30]. For example, Chang et al. [14] propose the neighbor embedding (NE) algorithm as 
the representative of the manifold learning-based methods. This algorithm assumes that the 
local geometry of the nonlinear manifolds formed by LR image patches is similar to that of 
their HR counterparts. Timofte et al. [17] propose the anchored neighbor regression (ANR) 
method, and then on this basis, they combine the best qualities of ANR algorithm and simple 
functions (SF) to obtain the adjusted anchor neighbor regression (A+) algorithm [18]. Dong 
et al. propose a model named super-resolution deep convolutional neural network (SRCNN) 
[26] consisted of three convolutional layers, which directly learns an end-to-end mapping 
between low- and high-resolution images. Assuming that each LR image patch shares the 
same sparse coefficient as its corresponding HR patch, Yang et al. utilize the sparse 
coefficient and the trained HR dictionary to generate a HR image [13]. Dong et al. [15] build 
a novel adaptive sparse domain selection (ASDS) scheme by integrating local autoregressive 
(AR) and nonlocal self-similarity (NLSS), which performs well on image deblurring and SR 
reconstruction. In [30], Huang et al. firstly introduce the gradient domain guided filter [31] 
into the ASDS scheme, and obtain a novel robust image super-resolution method to preserve 
edges. 

Recently, many researchers have shown great interest in the low-rank representation (LRR) 
and apply it into image SR reconstruction [3], [32-39], data clustering [40-42], and other 
fields. In [32], Chen et al. introduce the low-rank matrix recovery (LRMR) technique into 
the neighbor embedding (NE) SR method and obtain excellent results. Zhao et al. [33] 
investigate the LRR combining the sparsity with the correlation to establish an adaptive 
sparse coding-based super-resolution (ASCSR) model. In [35], Lu et al. study the 
locality-constrained low-rank representation (LLR) and apply it into a unified 
representation-based face SR framework, constructing HR image. Some low-rank based 
methods may capture the global structure features of an image and exhibit the powerful SR 
results. However, these methods have disadvantages, such as blurring edge structures and 
destroying critical details, since there doesn’t exist enough similar patches for any exemplar 
patch [36, 37]. In order to solve these problems, inspired by [30] and [35], we propose a 
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representation-based image super-resolution method introducing the gradient domain guided 
image filter into the LRR scheme. The aim is to reveal the essential structure of an image, 
and simultaneously preserve its edges during the super-resolution reconstruction. 

The major contributions of this paper are: 
(1) The prior information of the HR dictionary atom is introduced into the low-rank 

representation scheme via the gradient domain guided image filter, which can full use of the 
external high-frequency information to enhance image details. 

(2) An effective optimization model is established, which combines the global and local 
structure information to reveal the intrinsic structure of the input image and simultaneously 
preserve the edges. 

(3) The alternating direction method of the multiplier (ADMM) [43] is used to calculate 
the approximate solution of the proposed optimization problem, so as to get its 
representation coefficient. 

The rest of the paper is organized as follows. In section 2, we summarize related work on 
the sparse representation and the low-rank representation. In section 3, the proposed model is 
described and analyzed in detail. Experiments are performed to compare the proposed model 
with several conventional methods in section 4. Conclusions are given in section 5. 

2. Related Work 

In this section, we briefly review the related theories for SR problem, including sparse 
representation in SISR and low-rank representation, which are important to our proposed 
model. 

2.1 Sparse Representation in Single Image Super-Resolution 
The degradation process of image observation is expressed as follows 

,SH v= +Y X                              (1) 
where X andY respectively represent the original HR image and observed LR image. H is 
the blurring operator, and S is the down-sampling operator, v represents noise, which is 
defined as additive Gaussian noise. Sparse representation can effectively tackle the above 
inverse problem.  

In [13], Yang et al. firstly propose sparse representation-based SR method, they exploit 

the joint dictionary training strategy to get the HR dictionary hD and the LR dictionary lD , 
thus the two dictionaries share the same sparse representation coefficeient. After that, the 
sparse representation coefficient vector can be obtained through solving the following 
optimization problem. 

 2

2 1
min ,lα

λ− +D yα α                       (2) 

where y denotes the patch of LR imageY , λ ( 0λ > ) is the regularization parameter that 
balances the sparsity and the error term. Once the solutionα of Eq. (2) is obtained, the 

corresponding HR feature patch x can be recovered as hx = D α . 
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2.2 Low-Rank Representation 

Given an observation matrix A , suppose that A is corrupted by errors or noises 0E  

( 0= +A D E ). In order to recover the low-rank matrix D from A , consider the following 
regularized rank minimization problem 

min ( ), . .rank s t ,=
D

D A DΦ                          (3) 

whereΦ is the dictionary. More generally, replace the rank function with the nuclear norm to 
generate the following convex optimization expression 

                     min , . . ,s t
∗

=
D

D A DΦ                         (4) 

where ∗
D denotes the kernel norm of D that is the sum of all singular values of the matrix

D . 
The low-rank constraint on matrix D may uncover the A ’s intrinsic subspace structure 

and accurately cluster its samples. Therefore, in SR reconstruction, the LRR can uncover the 
global structure of the image. In the next section, the gradient domain guided filter [31] is 
incorporated into the LRR scheme to improve the quality of the reconstructed image. 

3. Proposed Method  
In this section, we detail the proposed model. Firstly, the gradient domain guided image filter 
is extracted from the HR dictionary, and a LRR model with edge-preserving is constructed, 
which balances the global intrinsic structure and the local detail enhancement. Then, the 
representation coefficient of the established optimization model is acquired via the 
alternating direction method of multiplier (ADMM) [43]. 

3.1 Model of the Proposed Algorithm 
Inspired by Trace Lasso [44], Zhao et al.[33] propose an ASCSR algorithm by introducing a 
low-rank regularization term: ( )ldiag

∗
D α . Their mathematical form may be written as 

                                                
2

2
min ( ) .l ldiagλ

∗
− +D y D

α
α α                  (5) 

Due to the characteristics 2 1( )ldiag
∗

≤ ≤Dα α α , it can well embody the sparsity and the 
correlation of image patches. Although the ASCSR algorithm may coordinate the 
relationship between the sparsity and the correlation via the LRR, the traditional LRR 
methods cluster similar patches into the same subspace on the assumption that the subspaces 
are independent. That is, the LRR merely captures the global structure of the data, without 
taking into account the local structure information. Therefore, it is necessary to further 
explore the underlying local structure of the data. 

The LRR-based SR reconstruction methods usually assume that there are sufficient similar 
patches to ensure their low-rank property. In practice, the assumption may lose critical image 
details and edge structure during the process of the reconstruction. Consequently, the 
edge-preserving is important to the SR reconstruction. By adding a constraint term to the 
objective function, the LRR is expanded to structure-constrained LRR (SC-LRR) [41] to 
restrict the structure of its solution, improving performances of the disjoint subspace segment. 
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The gradient domain guided image filter acted as a local filter may better preserve image 
edges and enhance image details. As a result, we introduce the gradient domain guided 
image filter as an edge constraint term into the LRR to boost image reconstruction 
performance. It can be expressed by the following equation 

{ }2 2
1 22 2

arg min ( ) ,diagλ λ
∗

= − + + ⊗l ly D D E
α

α α α α          (6) 

where 1dR ×∈α is the low-rank coding vector.⊗ denotes the element-wise multiplication 

(the Hadamard product). 1λ and 2λ are the parameters that control the balance between 

low-rank and edge-preserving. [ ]1 2, ,..., T
de e e=E ,

2

2
ˆ

exp
i
G

ie
σ

 − =
 
 

y y
describes edge 

constrain,σ is a constant used to adjust the speed of weight decay, and ˆ i
Gy is the gradient 

domain guided filter of the i -th atom in hD dictionary, and ˆ i
Gy is given by the following 

equation 
ˆ ,i i

G p h pa +b=y y                              (7) 

where i
hy is the i -th atom of hD dictionary, '

'
1 1 ( )

1
p p

p p

a a
ζζ ∈Ω

=
Ω

∑ and 

'
'

1 1 ( )

1
p p

p p

b b
ζζ ∈Ω

=
Ω

∑  are the mean of 'p
a and 'p

b [31]. 

In the optimization model Eq.(6), the rank minimization of matrix ( )ldiag αD means that 
we may select the most accurate dictionary for the reconstructed image patch y to against 
noise. In [35], it is confirmed that the structure constraint of subspaces is more necessary 
than the sparsity so as to obtain better prior information from dictionary atom. For the 
purpose of taking full advantage of the high-frequency prior information in dictionary atom, 
we preserve edges by minimizing the difference between the gradient domain guided filter of 
the HR dictionary atom and the LR input image patch. Therefore, we can simultaneously 
exploit both the global structure information and the local structure information. 

 

3.2 Deduce the Iterative Algorithm by ADMM 
Since the proposed model (6) is convex, the iterative algorithm may be derived by ADMM 
[42, 43] in order to solve the approximate solution. It may be rewritten as 
                                    

{ }2 2
1 22 2

arg min ,

. . ( ).s t diag

λ λ
∗

= − + + ⊗

=

l

l

y D Z E

Z D
α

α α α

α
             (8)                                                  

The augmented Lagrangian function of the above equation can be expressed as 
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( ) 2 2
1 22 2

2

2
2 2

1 22 2

, , , , ( )

( )
2

( ) ,
2

l l

l F

l l
F

L diag

diag

diag

µ λ λ

µ

µλ λ
µ

∗

∗

= − + + ⊗ + −

+ −

= − + + ⊗ + − +

Z C y D Z E C Z D

Z D

Cy D Z E Z D

α α α α

α

α α α

   (9) 

where 1λ and 2λ are the parameters for balancing different regularization terms, C represents 

the Lagrange multiplier, ,⋅ ⋅ represents the inner product, µ is the penalty parameter, and 

F
⋅ is the Frobenius norm. Through alternately calculating each variable in Eq. (9) and 

fixing remainder variables, we can obtain the solution of all variables. The specific steps are 
as follows. 

Firstly, update the low-rank matrix Z ,α and other variables are fixed. This can be solved 
by minimizing the following equation  

   

1

2

1 1arg min ( )
2

( ) ,
k

k k
k l k

k F

k
l k

k

diag

diagλ
µ

µλ
µ

µ

+ ∗

  = + − + 
  

 
= Θ − 

 

Z

CZ Z Z D

CD

α

α

          (10) 

whereΘ denotes the singular value threshold (SVT) operator acting on matrix. Defining 

( )
k

TUdiag Vλ
µ

 
Ψ  
 

σ as the singular value decomposition (SVD) of ( ) k
l k

k

diag
µ

−
CD α , 

then we get the following equation 

               
1 11 ( ) ( ) ,
k k

Tk
k l k

k

diag Udiag Vλ λ
µ µ

µ+

  
 = Θ − = Ψ      

CZ D α σ       (11) 

where
1

k

λ
µ

Ψ represents the SVT operator applying to vectorσ . 

Secondly, we update 1k+α in Eq. (8), and then the derivation is written as follows 
2

2 2
1 2 12 2

1

arg min ( )
2

,

k k
k l k l

k F

T T k
l l k

k

diag

diag

µλ
µ

µ

+ +

+

  = − + ⊗ + − + 
  

  
= + +     

Cy D E Z D

CAD y A D Z

α
α α α α

  (12) 

where 1

2 ( ) ( ) ( ( ))T T T
l l l ldiag diag diag diagλ

−
 = + + A D D E E D D . 
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The Lagrange multiplier C and the penalty parameter µ are updated as follows 

( )
( )

1 1 1

1

( ) ,

min , .
k k k k l k

k k k

diagµ

µ ρµ µ
+ + +

+

= + −

=

C C Z D α
                (13) 

The procedure of the approximate solution of optimization problem (6) based on ADMM is 
summarized in following Algorithm1. With the solutionα , the HR image patch is 

reconstructed by hx = D α . 
 

 

 

 

 

 

 

 

 

 

 

3.3 Single Image SR via the Proposed Method 
In general, for the example-based SR algorithm, we analyze image characteristics in patches. 
Therefore, given a LR image m nR ×∈Y , to generate a HR image tm tnR ×∈X  with the scale 
factor t , we up-sample the imageY with an interpolation operator, extract gradient features, 

and divide the resulting feature image into a series of overlapped patches l lR ×∈y . Then, 
we concatenate each resulting feature patch into a feature vector. To make the equation be 

simple, they are still expressed as
1lR ×∈y . 

In the training stage, the method described in [13] is applied to train dictionary. For each 

LR feature patch y , the HR counterpart x is reconstructed by hx = D α , where the sparse 
coefficientα is achieved by Algorithm 1. Finally, the mean of y is added to x , and all 

resulting HR image patches are combined into a complete image 0X . Furthermore, the global 

reconstruction constraint (1) is enforced on 0X to obtain a more satisfactory reconstructed 
image, as follows 

  
2

02
arg min .SH c∗ = − + −

X
X Y X X X               (14) 

The Eq. (14) is solved by gradient descent method, and its iterative update is written as 
follows 

1 0( ) ( ) .T T
t t t tv H S SH c+  = + − + − X X Y X X X             (15) 

The following Algorithm 2 summarizes how to perform single image super-resolution 
reconstruction via our proposed approach. 

Algorithm 1  An iterative algorithm based on ADMM for solving the 
optimization problem (6) 

Input: Input image y and initial information
0Z , 0α , 0C , 0µ , regularization 

parameters 1λ and 2λ , the learned LR and HR dictionary lD and hD . 
While not converge do 
Step 1: Update Z according to Eq. (11), while fix other variables; 
Step 2: Updateα according to Eq. (12), while fix other variables; 
Step 3: Update C and µ according to Eq. (13); 
End while 
Output: the representation coefficient vectorα . 
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Algorithm 2  SISR via LRR and gradient prior 

Input: LR imageY , the learned LR dictionary lD and HR dictionary hD  , 

scale factor t , regularization parameters 1λ and 2λ . 
Step1: Upscale the LR imageY via an interpolation operator with scale 
factor t , and extract gradient feature ofY . 
Step2: DivideY into a series of overlapped patches{ } 1

b
i i=

y . 

Step3: For each feature patch : 1i i =y tob . 

Step4: For each HR dictionary atom : 1j
hd j = to m . 

Step5: Extract the gradient-domain guided filter of j
hd . 

Step6: Calculate its corresponding sparse representation coefficient iα via our 
proposed Algorithm 1. 

Step7: Compute the corresponding HR feature patch i h i=x D α , add the 

mean of iy , and then generate the HR image patch. 
Step8: End for i . 
Step9: End for j . 
Step10: Stitch all resulting HR image patches to form a whole initial HR 

image 0X . 
Step11: Obtain the final HR image under the global reconstruction constraint 
(14). 
Output: The desired HR image. 

 

4. Experiments and Analysis 
In this paper, experiments are all implemented on an Intel(R) Core(TM) i7-6500U PC under 
the Matlab R2017b programming environment. We choose several natural HR images from 
Set 5, Set 10, Set 14 used in [15] and [18], as shown in Fig. 1. To objectively evaluate the 
performance of reconstructed HR images, the peak signal-to-noise ratio (PSNR) and the 
structural similarity (SSIM) are acted as experimental evaluation criteria. 

In the experiment, the size of the patch is set to 5×5, the overlap between adjacent patches 
is 1 pixel, and the magnification of the LR image is 2 or 3. For a color image, the human 
visual system (HVS) is more sensitive to the variation in luminance, so we apply our 
proposed method to the luminance channel (Y channel in YCbCr color space) and apply the 
bicubic interpolation to the Cb and Cr channel. All dictionaries are obtained by training 
100000+ pairs of patches and their sizes are set to 1024, which is as similar as [13]. 
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Fig. 1. Ten HR test images, from left to right and from top to bottom: Plants, Bike, Butterfly, Flower, 

Girl, Parthenon, Leaves, Parrots, Raccoon, Starfish. 

4.1 Effectiveness of Our Proposed Method  
In this subsection, our method is compared with Bicubic interpolation, ScSR [13], ANR [17], 
ASCSR [33], SRCNN [26], ASR+LR [34], and the experimental results on ten images 
shown in Fig. 1 are presented. We set the identical parameter 1 0.2λ =  as in the paper [33], 

and 2 0.1λ = . The selection of the parameter 2λ may be specifically discussed in section 4.2. 

And the initial values ofα , Z and C are all set to zero. Table 1 and Table 2 respectively 
list the PSNR and SSIM results obtained by our approach and the abovementioned methods 
when magnification factors are 2 and 3.  

As listed in Table 1 and Table 2, SRCNN shows the best results. In all the sparse 
representation-based methods, ASR+LR achieves the best results on Flower and Girl images, 
and the highest SSIM values are also achieved on Plants and Parrots images, which indicates 
the ASR+LR method can enhance structure information. However, the PSNR and SSIM 
averages obtained via our reconstruction method are the highest among all the sparse 
representation-based methods, which fully demonstrates the effectiveness and superiority of 
our approach. 

To visually evaluate the proposed approach, Fig. 2 shows the visual contrast results with a 
magnification of 2 on image Leaves, Fig. 3 and 4 show the visual detail comparison of the 
Plants and Butterfly images with a magnification of 3. Adding an edge-preserving 
regularization term, the sharp edges and rich details are well restored. Take Fig. 3 as an 
example, we can observe that the Bicubic interpolation generates a bit blur in the 
reconstructed image Plants, while ScSR and ANR have sharper outline and edges, with some 
ringing artifacts, ASCSR and ASR+LR have a certain improvement in visual effect. Deep 
learning-based methods have performed excellently in image SR, but they still have some 
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disadvantages. For example, they always need large amounts of data for training, which are 
sometimes difficult to obtain. In addition, they usually take a lot of time even several days to 
train the network on very sophisticated graphical processing units (GPUs). In this paper, we 
exploit the method in [13] without requiring a great many of data and spending too much 
time to build a couple dictionary. To sum up, our jobs not only have higher performance to 
reveal the details of the image but also have better actual SR reconstruction effect. 
 

 
Fig. 2. Comparison of SR results on Leaves by different methods (scaling factor 2s = ), from left to 

right and from top to bottom: Bicubic, ScSR[13], ANR[17], ASCSR[33], SRCNN[26]，ASR+LR[34], 
Proposed method. 

 
Table 1. Comparison of our method with Bicubic, ScSR[13], ANR[17], ASCSR[33], SRCNN[26] 

and ASR+LR[34](scaling factor 2s = ). 
Image       Criterion  Bicubic   ScSR    ANR   ASCSR  SRCNN  ASR+LR  Ours 
Plants     ×2 

 
Bike      ×2 

 
Butterfly   ×2 

 
Flower    ×2 

 
Girl       ×2 

 
Parthenon  ×2 

 
Leaves    ×2 

 
Parrots    ×2 

 
Raccoon   ×2 

 
Starfish    ×2 

 
Average   ×2 
 

PSNR 
SSIM 
PSNR 
SSIM 
PSNR 
SSIM 
PSNR 
SSIM 
PSNR   
SSIM 
PSNR 
SSIM 
PSNR 
SSIM 
PSNR 
SSIM 
PSNR 
SSIM 
PSNR 
SSIM 
PSNR 
SSIM 

34.3255 
0.9208 
25.6630 
0.8362 
27.4643 
0.9176 
30.4534 
0.8823 
34.7490 
0.7791 
28.1119 
0.8025 
27.4519 
0.9251 
31.3765 
0.9280 
30.9388 
0.8439 
30.2341 
0.8896 
30.0768 
0.8725 

35.7928 
0.9332 
26.9336 
0.8725 
28.9296 
0.9190 
31.5976 
0.9027 
35.0868 
0.7993 
28.6806 
0.8259 
28.8226 
0.9363 
32.6828 
0.9346 
31.9138 
0.8800 
31.4485 
0.9113 
31.1889 
0.8915 

35.7582 
0.9322 
26.9867 
0.8730 
29.0873 
0.9207 
31.6231 
0.9029 
35.1954 
0.8013 
28.7564 
0.8264 
28.9736 
0.9374 
32.7066 
0.9348 
32.0159 
0.8849 
31.4869 
0.9121 
31.2590 
0.8926 

35.7315 
0.9333 
27.0023 
0.8738 
29.1028 
0.9212 
31.8501 
0.9032 
35.2023 
0.8017 
28.7788 
0.8277 
29.0358 
0.9389 
32.7360 
0.9355 
32.0788 
0.8865 
31.5531 
0.9136 
31.3072 
0.8935 

36.7636 
0.9401 
27.8295 
0.8893 
31.2009 
0.9399 
32.4880 
0.9156 
35.6162 
0.8064 
29.4198 
0.8393 
31.1967 
0.9493 
33.5052 
0.9416 
32.4398 
0.8966 
32.4093 
0.9233 
32.2869 
0.9041 

35.8236 
0.9358 
27.2321 
0.8797 
29.1877 
0.9243 
32.0036 
0.9092 
35.4112 
0.8038 
28.8144 
0.8313 
29.3018 
0.9402 
32.9107 
0.9386 
32.1853 
0.8890 
31.7055 
0.9147 
31.4576 
0.8967 

35.9888 
0.9355 
27.4201 
0.8832 
29.3427 
0.9256 
31.9317    
0.9083 
35.3979 
0.8036 
28.9578 
0.8347 
29.5426 
0.9420 
33.0060 
0.9382 
32.2964 
0.8921 
31.8238 
0.9168 
31.5708 
0.8980 

 

 
Fig. 3. Comparison of SR results on Plants by different methods (scaling factor 3s = ), from left to 

right and from top to bottom: Bicubic, ScSR[13], ANR[17], ASCSR[33], SRCNN[26], ASR+LR[34], 
Proposed method. 
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Fig. 4. Comparison of SR results on Butterfly by different methods (scaling factor 3s = ), from left to 
right and from top to bottom: Bicubic, ScSR[13], ANR[17], ASCSR[33], SRCNN[26],ASR+LR[34], 

Proposed method. 
 
Table 2. Comparison of our method with Bicubic, ScSR[13], ANR[17], ASCSR[33], SRCNN[26] 

and ASR+LR[34](scaling factor 3s = ). 
Image       Criterion  Bicubic  ScSR    ANR   ASCSR   SRCNN  ASR+LR  Ours 
Plants     ×3 

 
Bike      ×3 

 
Butterfly   ×3 

 
Flower    ×3 

 
Girl       ×3 

 
Parthenon  ×3 

 
Leaves    ×3 

 
Parrots    ×3 

 
Raccoon   ×3 

 
Starfish    ×3 

 
Average   ×3 
 

PSNR 
SSIM 
PSNR 
SSIM 
PSNR 
SSIM 
PSNR 
SSIM 
PSNR   
SSIM 
PSNR 
SSIM 
PSNR 
SSIM 
PSNR 
SSIM 
PSNR 
SSIM 
PSNR 
SSIM 
PSNR 
SSIM 

31.0944 
0.8340 
22.8135 
0.6830 
24.0558 
0.8264 
27.4608 
0.7705 
32.7046 
0.6905  
26.0415 
0.6865 
23.4596 
0.8002 
28.0973 
0.8716 
28.3971 
0.7065 
27.0022 
0.7834 
27.1127 
0.7653 

31.3387 
0.8428 
23.3357 
0.7136 
24.7012 
0.8316 
27.7456 
0.7827 
32.5367 
0.7022 
26.0518 
0.6954 
24.1175 
0.8304 
28.7211 
0.8699 
28.3827 
0.7214 
27.1137 
0.7895 
27.4045 
0.7780 

31.5526 
0.8474 
23.4027 
0.7228 
24.8138 
0.8322 
27.9469 
0.7931 
32.9312 
0.7084 
26.2983 
0.7021 
24.2977 
0.8329 
28.8623 
0.8744 
28.5666 
0.7358 
27.3744 
0.7955 
27.6047 
0.7845 

31.6871 
0.8488 
23.4263 
0.7249 
24.8771 
0.8328 
27.9531 
0.7933 
33.0901 
0.7113 
26.3692 
0.7038 
24.3847 
0.8356 
28.9341 
0.8778 
28.6794 
0.7373 
27.4052 
0.7991 
27.6804 
0.7865 

32.4816 
0.8669 
24.4864 
0.7427 
26.5799 
0.8595 
28.9981 
0.8111 
33.6761 
0.7176 
26.9895 
0.7144 
25.4772 
0.8604 
29.7291 
0.8873 
29.0984 
0.7470 
28.4517 
0.8215 
28.5968 
0.8028 

31.7753 
0.8503 
23.3169 
0.7234 
24.8528 
0.8325 
28.1433 
0.8002 
33.2411 
0.7150 
26.4212 
0.7092 
24.3026 
0.8337 
28.9784 
0.8827 
28.7547 
0.7438 
27.6890 
0.8122 
27.7475 
0.7903 

31.8659 
0.8547 
23.4574 
0.7269     
24.9449 
0.8337 
28.2447  
0.7997 
33.1840 
0.7143       
26.5532 
0.7112 
24.4624 
0.8395 
29.0563 
0.8833 
28.8693      
0.7447 
27.7772    
0.8173 
27.8415 
0.7925 

 

4.2 Discussion about the Parameter Settings in Our Method 
The low-rank property of our method means that objective function (6) drops the 

edge-preserving regularization term 2

2
E α⊗ when 2 0λ = . Then the objective function is 

equivalent to the ASCSR model proposed in [33], the low-rank property and corresponding 
parameter settings have already been discussed in [33] and we don’t repeat here. Extracting 
the gradient domain guided filter of every HR dictionary atom, the high-frequency details in 
the HR dictionary can be utilized as the prior information. In this subsection, we mainly 

discuss the settings of the trade-off parameter 2λ . In Fig. 5, when 2λ is changed from 0 to 
0.5 , the PSNR and SSIM average curves of ten test images obtained by our proposed 
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method are plotted, respectively. As a result, when 1 0.2λ = and 2 0.01λ = , both of them 

reach the peak. And after 2 0.2λ = , PSNR and SSIM tend to stable. 
 
 
 

 

 

 

 

 

 

 
 

Fig. 5. From left to right, average effect of PSNR and SSIM values on different 2λ . 

  4.3 Robustness of Our Proposed Method  
In practice, the images are usually contaminated by noises. Herein, we choose any six of the 
ten test images, which are Bike, Butterfly, Leaves, Parrots, Raccoon and Starfish to evaluate 
the robustness of our method against noise. Gaussian noises with a standard deviation of 

2,4,6 are respectively chosen to add into the input LR images, corresponding to 1=0.2λ ,

0.4 , 0.6 ; and 2λ is a constant 2 0.1λ = . Table 3 lists the average PSNR and SSIM values 
for the six reconstructed images obtained through different methods under different Gaussian 
noises. Although the performance of SRCNN is the best among the above algorithms, our 
proposed algorithm achieves the best objective results among the sparse representation-based 
approaches. Furthermore, in order to get better reconstruction results, SRCNN requires 
higher overhead during training, such as a large number of samples, more model parameters, 
and a lot of time. Fig. 6 and 7 illustrate the visual effect of Bike and Starfish. As we know, 
noises degrade the image quality. From results, the proposed method and the ASR+LR have 
higher performance than other methods since they may well in suppressing noises. That is 
the low-rank constraint helps to enhance image SR robustness. 
 

 

 

 

 

 
Fig. 6. SR results on Bike by different methods (scaling factor 2, 6s σ= = ), from left to right and 

from top to bottom: Bicubic, ScSR[13], ANR[17], ASCSR[33],  SRCNN[26]，ASR+LR[34], 
Proposed method. 
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Fig. 7. SR results on Starfish by different methods (scaling factor 3, 6s σ= = ), from left to right and 

from top to bottom: Bicubic, ScSR[13], ANR[17], ASCSR[33],  SRCNN[26]，ASR+LR[34], 
Proposed method. 

 
Table 3. Average PSNR (dB) and SSIM results on noisy images (Bike, Butterfly, 

Leaves, Parrots, Raccoon, Starfish). 

4.4 Discussion on the Performance of Noisy Real Word Image 
Actual noisy images in SUN database [45] are used to verify our method in this section. Two 
actual images (as shown in Fig. 8) are selected, and the regions of interest (ROI) marked in 
the figures are reconstructed to verify the feasibility and robustness of the approach in 
practice. We perform SR reconstruction on the ROI areas in Airport and Building with the 
magnification factor3 . Fig. 9 and 10 display the visual comparison of SR results obtained by 
our method with Bicubic, ScSR, ANR, ASCSR, SRCNN and ASR+LR. As shown in the two 
figures, we get the following conclusion. Firstly, the Bicubic produces the most blurred 
image. Then, ASCSR and ASR+LR generate better results than ScSR and ANR, since the 
edges of the image are cleaner. Finally, our proposed method well preserves the edges and 
reveals more robust against noise than other sparse representation-based methods. Compared 
to SRCNN, our method almost has the similar visual effect as it does. The experimental 
results indicate that our method can be applied to real word noisy images and meet the need 
of actual image reconstruction. 
 

 

 

 

 

 

 

 

 
 
Fig. 8. From left to right, actual noisy images: Airport, Building and their corresponding ROI areas for 

testing. 
 

Noise Level  Criterion  Bicubic    ScSR     ANR   ASCSR   SRCNN   ASR+LR    Ours 
0 
 
2 
 
4 
 
6 

           

PSNR 
SSIM 
PSNR 
SSIM 
PSNR 
SSIM 
PSNR 
SSIM 

28.8548 
0.8901 
28.8058 
0.8809 
28.6626 
0.8569 
28.4390 
0.8233 

30.1218 
0.9090 
29.9393 
0.8935 
29.4496 
0.8571 
28.7579 
0.8097 

30.2095 
0.9105 
30.0566 
0.8954 
29.5682 
0.8597 
28.8619 
0.8213 

30.2515 
0.9116 
30.1588 
0.8979 
29.6457 
0.8612 
28.9579 
0.8236 

31.4302 
0.9233 
31.2903 
0.9020 
30.6288 
0.8774 
29.7100 
0.8362 

30.4539 
0.9144 
30.2721 
0.8996 
29.7613 
0.8632 
29.0648 
0.8259 

30.5586 
0.9157 
30.3711 
0.9006 
29.8531 
0.8644 
29.1251 
0.8271 
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Fig. 9. SR results of the ROI in Airport image by different methods (scaling factor 3s = ), from left 

to right and from top to bottom: Bicubic, ScSR[13], ANR[17], ASCSR[33], SRCNN[26]，
ASR+LR[34], Proposed method. 

 

 
Fig. 10. SR results of the ROI in Building image by different methods (scaling factor 3s = ), from 

left to right and from top to bottom: Bicubic, ScSR[13], ANR[17], ASCSR[33], SRCNN[26]，
ASR+LR[34], Proposed method. 

                                                

5. Conclusion 
In this paper, the gradient domain guided filter of HR dictionary atoms is introduced into the 
LRR scheme as an edge-preserving regularization term, and a robust SISR reconstruction 
method is proposed. Through experimental results, the LRR is proved to effectively capture 
the global structure of the image. The gradient domain guided filter incorporates an explicit 
first-order edge-aware constraint to enhance the fine detail of an image based on local 
optimization. The proposed method integrates the edge-preserving regularization term into 
the LRR, which can simultaneously exploit both the global and local structure of the image 
to ensure the quality of the restored HR image. Extensive experiments on test images 
demonstrate that the proposed approach is more competitive than some other state-of-the-art 
methods. 
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