• Title/Summary/Keyword: standards for lightning protection

Search Result 20, Processing Time 0.025 seconds

Wet Flashover Characteristics and Reform Measure of a Conventional Lightning Rod against Lightning Impulse Voltages (뇌임펄스전압에 대한 돌침형 피뢰침의 주수섬락특성과 개선 방안)

  • 이복희;강석만;엄주홍;이승칠;김승지
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.3
    • /
    • pp.93-100
    • /
    • 2002
  • In this paper, in ordor to examine the relevant technical facts which are very instructive to revise the domestic standard for lightning protection systems, standards and technical guideline for the protection of structure against lightning were reviewed, and several issues of the domestic standards were experimentally investigated. As a consequence, the insulator of relatively low implse voltage and a large percentage of lighting rods is flashovered by relatively low impulse voltage and a lage percentage of lighting current flows through supporting mast. Thus the potential gradient in the vicinity of supporter for lighting rods is extremely increased and the role of lighting propection systems is nullified. It seems obvious that the flashover of insular supporting lighting rod can range from erratic operation of microelectronic devices to minor physical ham or even death, or costly damage electrical equipment.

The Performance Improvement of Lightning Arrester Leakage Current Measuring Device for GIS (GIS용 피뢰기 누설전류 측정장치 성능개선)

  • Kim, Won-Gyu;Kim, Min-Soo;Baek, Young-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1726-1731
    • /
    • 2014
  • This paper shows the developed new lightning arrester LCM (Leakage Current Measuring device) which is important element of GIS (Gas Insulated Switchgear) Preventive & Diagnostic system and verify its performance though strengthened test standards. The existing lightning arrester LCM was modified to solve measuring errors which happened frequently. At first, we explained the principle of measuring leakage current. Through analyzing some problems which the existing LCM have. we got some improvable items. For the performance verification of the improved LCM, we manufactured prototype LCM which is applied some improvable items such as improving LCM circuit, adding protection circuit, optimizing inner structure of LCM and changing ground design. After then we carried out the performance test. Accredited testing laboratory carried out the performance verification test according to performance test criteria and procedure of reliability test standards, IEC-60225, 61000 and 60068 etc. We confirmed the test results which correspond with the performance test criteria. Also, we confirmed the performance of the improved LCM installed & being operated at G Substation through the immunity test against the normal noise and open/close surge etc.

A Consideration of Volume and Installation Method of Concrete-Embedded Foundation Earthed an Electrode (콘크리트에 매입된 기초접지극의 크기 및 설치방법에 관한 고찰)

  • Lee, Ju-Cheol;Lee, Young-Chul;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.7
    • /
    • pp.82-88
    • /
    • 2013
  • IEC standards do not require to limit the earthing resistance of the concrete-embedded foundation earthing electrode which is installed to a specific value. However, in Korea the value of $5{\Omega}$ and below applies to the earthing resistance for a domestic customer whose receiving voltage is 22.9kV. This paper calculates the minimum area and volume of the concrete-embedded foundation earthing electrode in order to obtain a specific value of the earthing resistance when the electrode of the building's lightning protection system and that of its power system are interconnected. It also suggested the most appropriate method of installing the foundation earthing electrode, taking the electric characteristics of concrete into account.

A Study on the Surge Protection Device for Computer Networks by International Standards (국제규격 대응 컴퓨터 네트워크용 서지방호장치 개발에 관한 연구)

  • Park, Dae-Won;Seo, Hwang-Dong;Song, Jae-Yong;Han, Joo-Sup;Kil, Gyung-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.277-280
    • /
    • 2005
  • This paper dealt with the development of a surge protection device (SPD) that can protect high speed computer network devices from overvoltages caused by switching operations or lightning surges. The designed SPD is a form of hybrid circuit which is composed of a gas tube having large current diverting capability, high response bi-directional avalanche diodes, and fast recovery diodes to reduce insertion loss on high frequency domain. Surge protection and signal transmission characteristics of the fabricated SPD was tested according to the international standards, IEC 61000-4-5 and IEC 61643-21. From the test results, the SPD is satisfied with the international standards and the high cut-off frequency was 204MHz. Also, the SPD showed a good performance without an insertion loss on a field test of 100Mbps class Local Area Network

  • PDF

Investigation on the Spot for Grounding Systems in Buildings

  • Gil, Hyoung-Jun;Kim, Dong-Woo;Kim, Dong-Ook;Kim, Hyang-Kon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.3
    • /
    • pp.39-45
    • /
    • 2010
  • This paper deals with investigation on the spot for grounding systems of buildings based on international standards at construction sites. The investigation was carried out for grounding method, grounding type, shape of grounding electrode, grounding for a lightning protection system, continuity of steelwork in reinforced concrete structures, etc. The investigation on the spot was performed by a researcher and engineer with over fifteen years of industry experience all over the country. As a result of the investigation on the spot in 13 buildings, common grounding and structure grounding methods were dominant. The safety improvement methods include installation of equipotential bonding conductors for the connection to the main earthing terminal, equipotential bonding conductors for supplementary bonding, use of Surge Protective Devices (SPD), and safe connections between earthing conductors and the rebar.

Development of a Surge Protective Device for Computer Network to International Standards (국제규격 대응 컴퓨터 네트워크용 서지방호장치 개발)

  • Park Dae-won;Song Jae-yong;Han Joo-sup;Kil Gyung-suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.6
    • /
    • pp.1253-1259
    • /
    • 2005
  • This paper dealt with the development of surge protection devices (SPDs) that can protect high speed computer network devices from overvoltages caused by switching operations or lightning surges. The designed SPD is a form of hybrid circuit which is composed of a gas tube having large current diverting capability, high response bi-directional avalanche diodes, and fast recovery diodes to reduce insertion loss on high frequency domain. Surge protection and signal transmission characteristics of the fabricated SPD was tested according to the international standards, IEC 61000-4-5 and IEC 61643-21. From the test results, the SPD is satisfied with the international standards and the high cut-off frequency was 204 MHz. Also, the SPD showed a good performance without an insertion loss on a field test of 100 Mbps class Local Area Network.

The Design Flowchart of Earthing System for Building Electrical Installations in Accordance with International Standards (국제표준에 따른 건축전기설비의 접지시스템 설계순서)

  • Lee, Ju-Cheol;Yeom, Jin-Geun;Jeong, Seung-Hyun;Byeon, Cheol-Gyun;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.8
    • /
    • pp.113-120
    • /
    • 2014
  • In this paper, designing of an earthing system in accordance with international standards with regard to 22.9kV-y multi-grounded neutral system is discussed and confirmed that the consumer's earthing system can be a part of a global earthing system by interconnecting its earthing system with the neutral conductor of 22.9kV-y multi-grounded system. Further, it is proposed that some modification of the earthing system design flowchart given in the international standards are necessary when considering the equipotential bonding, lightning protection, and telecommunications facilities as well as the basic safety requirements.

Assessment of Electrical Safety for Grounding System by Investigation on the Spot (현장조사에 의한 접지시스템의 전기안전성 평가)

  • Gil, Hyoung-Jun;Kim, Dong-Woo;Kim, Dong-Ook;Lee, Ki-Yeon;Kim, Hyang-Kon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.361-364
    • /
    • 2008
  • This paper deals with assessment of electrical safety for grounding system of buildings by investigation on the spot at construction site. The investigation was carried out for grounding method, grounding type, shape of grounding electrode, grounding for lightning protection system, continuity of steelwork in reinforced concrete structure and so on. The investigation on the spot was performed by researcher, engineer with over fifteen years of industry experience all over the country. As a result of investigation on the spot to 13 buildings, common grounding method was dominant. A new grounding system based on international standards includes unity grounding system, structure grounding utilizing steel reinforced concrete, equipotential bonding. use of surge protective device.

  • PDF

Things To Be Considered for a New Conservation Laboratory (보존처리실 신설시 고려 사항)

  • Ahn, Byongchan
    • Journal of Conservation Science
    • /
    • v.11 no.1 s.14
    • /
    • pp.52-57
    • /
    • 2002
  • Although a conservation laboratory is a kind of hospital for cultural assets, it is often planned on the standard of ordinary offices. In this study, things and conditions to be considered for a new conservation laboratory were discussed and suggested briefly, for the sections of architecture, electricity and lightning, air condition, fire protection, machinery and tools. As methods of creating a workspace adequate to conservation work, the method of dividing workspace on the basis of workstand and the method of placing machinery and tools on the basis of water supply and sewage systems were explained., Because a conservation laboratory varies in its duties and functions, it seems difficult that all the standards and conditions suggested in this study be fulfilled in every case. But understanding general standards and conditions and choosing ones adequate to special functions of each laboratory will be helpful to planning a new conservation laboratory.

  • PDF

A Study on the Regulatory Technology for Lightning Protection and Grounding System in Nuclear Power Plants (원전낙뢰보호 및 접지계통에 대한 규제기술연구)

  • Lee, J.D.;Zhu, O.P.;Lee, S.K.;Kim, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.66-68
    • /
    • 2007
  • The regulatory guide, RG-1.204 and its underlying or confirmatory research, NUREG/CR-6866 were studied for Korean application to LPGS of NPPs. However they excluded the application to that of NPPs. So US-NRC approved selectively industrial standards to that of NPPs on Nov 2005. It is necessary to understand the basis of regulatory technology related regulatory positions on LPGS and important to implement the guidance on LPGS as a resonable standard. The paper is examined what and how state of the art of relevant technology applied to the LPGS as well as the trip-out events related to electrical system were involved with LPGS. We reviewed the relevant standards applicable to Korean NPPs. Following are concluded to recommend. (1) IEEE 510-1050 is recommended as a guide for I&C grounding against EMI and lighting transients (2) IEEE Std-665, 510-666, Std-C62.23 for electrical grounding against voltage surges and lighting transients (3) Inspection should be thoroughly be implemented a frequency of 3-5 year period according to NFPA780 or KSC-IEC 61024.

  • PDF