• 제목/요약/키워드: standard dye

검색결과 116건 처리시간 0.03초

Ultrasonic Synthesis of CoSe2-Graphene-TiO2 Ternary Composites for High Photocatalytic Degradation Performance

  • Ali, Asghar;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제54권3호
    • /
    • pp.205-210
    • /
    • 2017
  • In this study, we examined the photo-degradation efficiency of $CoSe_2$-Graphene-$TiO_2$ ($CoSe_2-G-TiO_2$) nanocomposites under visible light irradiation using rhodamine B (RhB) as standard dye. $CoSe_2-G-TiO_2$ nanocomposites were synthesized by ultrasonication and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopic analysis and UV-Vis absorbance spectra analysis. Our results show that the $CoSe_2-G-TiO_2$ nanocomposite exhibited significant photo degradation efficiency compared to pure $TiO_2$ and $CoSe_2-G$, approximately 85.2% of the rhodamine (Rh B) degraded after 2.5 h. It is concluded that the $CoSe_2-G-TiO_2$ nanocomposite is a promising candidate for use in dye pollutants.

Development of a Method to Quantify Lysine in Small Amount of Rice Grain

  • Kim, Joo-Shin;Kim, Kwang-Jin;Ma, Wing Chi Joyce;Chung, Hau-Yin
    • 환경위생공학
    • /
    • 제22권2호
    • /
    • pp.75-84
    • /
    • 2007
  • A lysine determination method for low quantity of rice was modified from the original Dye-Binding Lysine (DBL) method used in the national standard in China [GB 4801-84, 1984]. By making use of the property that lysine does not bind to the crocein orange G dye after treated with propionic anhydride, the amount of lysine in rice samples could be determined directly by calculating the difference between the absorbances of the treated and the untreated samples. Various commercial rice samples were purchased from market and evaluated. Several methods were tested by varying both the sizes of the samples and the concentrations of the dye solutions. Results showed that when using 1.284 mM of crocein orange G dye solution and 15.5 mg of sample, the results were most reproducible. The corresponding lysine content in sample were $3.36\;{\pm}\;0.09\;mg/g$ and $3.35\;{\pm}\;0.19\;mg/g$ by traditional method and modified method, respectively. Statistically, there was no significant difference between the results (p>0.05).

과산화수소/자외선/산소 처리를 이용한 베르베린 염료 및 염직물의 퇴화거동 연구 (Study on the Degradation Behavior of Berberine Dye and Berberine Dyed Silk using Hydrogen Peroxide/UV/Oxygen Treatment)

  • 안춘순
    • 복식문화연구
    • /
    • 제20권2호
    • /
    • pp.238-250
    • /
    • 2012
  • This study examined the degradation behavior of SB(standard berberine) dye and SB dyed silk using HPLC-MS instrument after degradation in the hydrogen peroxide/ultraviolet ray radiation/oxygen system up to 9 days and 40 hours respectively. In the degraded samples, berberine was detected at 5.2 min in the SB dye and 5.3 min in the SB dyed silk with its molecular ion=336 and the UV spectra of quaternary alkaloid. Degradation product 3(m/z=102) newly appeared after 5 day degradation treatment with continued increase till the end of degradation treatment. The amount of berberine in the degraded dye decreased with degradation progression. In the silk dyeings, berberine was detected only up to 21 hour degradation sample. The amount of berberine decreased dramatically during the first 6 hours of degradation treatment. The CIELAB color measurement of the silk dyeings showed dramatic change in the b* value, near zero in the 40 hour degraded silk. CIELAB and Munsell color measurements were in agreement with the HPLC-MS results of the dyed silk in the change of berberine content that the degraded silk became white and lost yellow color.

피콜리닉산 리간드를 갖는 염료감응형 태양전지용 루테늄 염료 합성과 특성분석 (Synthesis and Characterization of an Organometallic Ruthenium Complex Bearing 4-Picolinic Acid Ligands for Dye-Sensitized Solar Cells (DSSCs))

  • 정혜인;안병관
    • 한국전기전자재료학회논문지
    • /
    • 제29권3호
    • /
    • pp.192-197
    • /
    • 2016
  • A novel heteroleptic ruthenium(II) complex bearing a 4-picolinic acid unit as anchoring ligands (trans-dithiocyanato bis(4-picolinic acid)ruthenium(II) (trans-H1)) was synthesized and its chemical structure was identified by $^1H$-NMR, FT-IR and mass spectroscopy. The optical, thermal, electrochemical and dye adsorption properties of trans-H1 dye were investigated and compared with those of the gold standard ruthenium complex, Ru(4,4'-dicarboxy-2,2'-bipyridine)$_2cis(NCS)_2$ (N3). DSSCs based on trans-H1 dyes were examined under the illumination of AM 1.5 G, $100mWcm^{-2}$ and exhibited typical photovoltaic properties with an open-circuit voltage ($V_{OC}$) of 0.46 V, a short-circuit current ($J_{SC}$) of $4.10mA{\cdot}cm^{-2}$, a fill factor (FF) of 60.4%, and a conversion efficiency (PCE) of 1.14%.

아조염료와 디아조 성분의 분리 및 비교에 관한 연구 (Study for the separation and comparison of azo dyes and their diazo components)

  • 정혁
    • 분석과학
    • /
    • 제19권1호
    • /
    • pp.50-57
    • /
    • 2006
  • 계면활성제를 완충용액에 섞어서 사용하는 미셀 모세관 전기영동법(micellar electrokinetic capillary chromatography, MECC)을 이용하여, 아조염료의 합성성분이면서 동시에 아조염료가 분해될 때 생성되는 H-acid modifier 혹은 2-naphthylamine-1,5-disulfonic acid 등의 디아조 성분에 대한 분석을 수행하고, 이 분리 결과를 Ion-Paring 메카니즘을 이용한 고성능 액체 크로마토그래피법과 비교하였다. 이 방법을 이용하여 Direct Blue 2, Direct Blue 6, Direct Blue 15 등의 직접염료 그리고 Reactive Orange 4와 같은 반응성 염료의 혼합용액을 완전히 분리할 수 있었다. 특히 각 염료의 환원용액을 H-acid, J-acid, ${\gamma}$-acid, orthanilic acid, sulfanilic acid 2-naphthylamine-1,5-disulfonic acid 등의 표준물질과 비교 분석한 결과, 사용한 각 염료의 디아조 성분인 H-acid modifier 혹은 2-naphthylamine-1,5-disulfonic acid에 대한 정보를 얻을 수 있었다. 본 연구의 결과를 토대로 Ion-Pair 크로마토그래피법과 모세관 전기영동법은 미지의 염료에 대한 성분확인 및 디아조 혹은 커플링 성분분석에 응용할 수 있음을 알 수 있었다.

Novel Extended π-Conjugated Dendritic Zn(II)-porphyrin Derivatives for Dye-sensitized Solar Cell Based on Solid Polymeric Electrolyte: Synthesis and Characterization

  • Kang, Min-Soo;Oh, Jae-Buem;Roh, Soo-Gyun;Kim, Mi-Ra;Lee, Jin-Kook;Jin, Sung-Ho;Kim, Hwan-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권1호
    • /
    • pp.33-40
    • /
    • 2007
  • We have designed and synthesized three Zn(II)-porphyrin derivatives, such as Zn(II) porphyrin ([G-0]Zn-P1) and aryl ether-typed dendron substituted Zn(II)-porphyrin derivatives ([G-1]Zn-P1 and [G-1]Zn-P-CN1). Their chemical structures were characterized by 1H-NMR, FT-IR, UV-vis absorption, EI-mass, and MALDI-TOF mass spectroscopies. Their electrochemical properties were studied by cyclic voltammetry measurement. These Zn(II)-porphyrin derivatives have been used to fabricate dye-sensitized solar cells (DSSCs) based on solid polymeric electrolytes as dye sensitizers and their device performances were evaluated by comparing with that of a standard Ru(II) complex dye. [G-1]Zn-P-CN1 showed the enhanced power conversion efficiency than those of other porphyrin derivatives, as expected. Short-circuit photocurrent density (Jsc), open-circuit voltage (Voc), fill factor (FF), and power conversion efficiency (η) of solid-typed DSSC for [G-1]Zn-P-CN1 were evaluated to be Jsc = 11.67 mA/cm2, Voc = 0.51 V, FF = 0.46, and η = 2.76%, respectively.

X-선 조사 후 고온 열화된 치자 염직물에서 추출한 색소 변이 연구 (A Study on Dye Variation Extracted from Dyed Textile with Gardenia degraded at HIgh temperature after X-ray Irradiation)

  • 윤다영;박혜진;박세은;허선홍;임수빈;정용재
    • 방사선산업학회지
    • /
    • 제18권1호
    • /
    • pp.53-61
    • /
    • 2024
  • This study explores the effects of X-ray irradiation for biological control and high-temperature degradation on dye stability in dyed textiles with Gardenia. To evaluate this study, optimal extraction solvents for these textiles were identified by comparing them with a crocin standard solution. Extraction using pyridine closely matched crocin. The study then assessed the stability of X-ray irradiation and high-temperature degradation on these textiles. Transparent yellow dyes were observed in all samples. Color differences were found to increase at higher irradiation doses and longer degradation periods. While UV spectroscopy spectra showed broadening and lowering trends with higher irradiation doses and longer degradation periods, suggesting a reduction in colorant transition, mass spectrometry revealed minimal chemical changes. In conclusion, both X-ray irradiation and high-temperature degradation induced spectral changes without complete dye decomposition. Major colorants were consistently detected.

Novel Synthesis of MnO2-SiC Fiber-TiO2 Ternary Composite and Effective Photocatalytic Degradation with Standard Dyes

  • Latiful Kabir;Yeon Woo Choi;Yun Seo Shin;Yeon Ji Shin;Geun Chan Kim;Jun Hyeok Choi;Jo Eun Kim;Young Jun Joo;Kwang Youn Cho;Hyuk Kim;Je-Woo Cha;Won-Chun Oh
    • 한국재료학회지
    • /
    • 제34권6호
    • /
    • pp.275-282
    • /
    • 2024
  • In this work, we investigated the photo-degradation performance of MnO2-SiC fiber-TiO2 (MnO2-SiC-TiO2) ternary nanocomposite according to visible light excitation utilizing methylene blue (MB) and methyl orange (MO) as standard dyes. The photocatalytic physicochemical characteristics of this ternary nanocomposite were described by X-ray diffraction (XRD), scanning electron microscopy (SEM), tunneling electron microscopy (TEM), ultraviolet-visible (UV-vis), diffuse reflectance spectroscopy (DRS), electrochemical impedance spectroscopy (EIS), photocurrent and cyclic voltammogram (CV) test. Photolysis studies of the synthesized MnO2-SiC-TiO2 composite were conducted using standard dyes of MB and MO under UV light irradiation. The experiments revealed that the MnO2-SiC-TiO2 exhibits the greatest photocatalytic dye degradation performance of around 20 % with MB, and of around 10 % with MO, respectively, within 120 min. Furthermore, MnO2-SiC-TiO2 showed good stability against photocatalytic degradation. The photocatalytic efficiency of the nanocomposite was indicated by the adequate photocatalytic reaction process. These research results show the practical application potential of SiC fibers and the performance of a photocatalyst composite that combines these fibers with metal oxides.

수용액중의 진주층에 대한 염기성 염료의 흡착매개변수 및 흡착모델 선정 (Selection of Adsorption Model and Parameters for Basic Dyes from Aqueous Solution onto Pearl Layer)

  • 신춘환;송동익
    • 한국환경과학회지
    • /
    • 제14권12호
    • /
    • pp.1203-1209
    • /
    • 2005
  • Basic dyes, Rhodamine 6G(R6G), Rhodamine B(RB), and Methylene Blue(MB), dissolved in water were used to investigate single-component adsorption affinity to the pearl layer fractionated according to the size. Unfractionated pearl layers were also used as adsorbents for the R6G and RB. The Langmuir and the Redlich-Peterson(RP) models were used to fit the adsorption data, and the goodness of fit was examined by using determination coefficient($R^2$) and standard deviation(SSE). The 3-parameter RP model was found to be better in describing the dye adsorption data than the 2 parameter Langmuir model, as can be expected from the number of parameters involved in the model. The adsorption affinity to the fractionated pearl layer was higher than that to the unfractionated layer The affinity order to the fractionated Conchiolin layer was found to be R6G > MB > RB. Furthermore, the dye adsorption capacity of the various types of pearl layer was found to be in the order, the fractionated pearl > powdered pearl > unfractionated pearl, exhibiting different adsorption isotherms according to the types of layer used in the study.

Pt-ZnO 상대전극을 가지는 염료감응형 태양전지의 광전변환 특성 분석 (Enhanced catalytic activity of Pt counter electrodes employing ZnO nanorods for dye-sensitized solar cells)

  • 이정관;천종훈;양현석;김재홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.118.2-118.2
    • /
    • 2011
  • In order to increase the energy conversion efficiency of dye-sensitized solar cells (DSSCs), we employed a counter electrode that was platinum coated using a doctor blade technique on synthesized ZnO nanostructures on fluorinedoped tin oxide (FTO). The ZnO nanostructures possessing high electrochemical activity and large surface area of the counter electrode were grown by a chemical bath deposition (CBD) method at various times, 2, 4, and 8 h. The efficiency of DSSC with the Pt-ZnO counter electrode was improved 7.01% (grown for 2 h), 7.63% (grown for 4 h), and 6.13% (grown for 8 h), respectively. Compared with a standard DSSC without ZnO nanostructures, whose efficiency was 6.27%, the energy conversion efficiency increased approximately 22% for the DSSC with the Pt-ZnO (grown for 4 h) electrode. It indicates that the Pt coated on the ZnO nanostructure improves the electrocatalytic activity of the counter electrode.

  • PDF