DOI QR코드

DOI QR Code

Ultrasonic Synthesis of CoSe2-Graphene-TiO2 Ternary Composites for High Photocatalytic Degradation Performance

  • Ali, Asghar (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2017.03.06
  • Accepted : 2017.04.25
  • Published : 2017.05.31

Abstract

In this study, we examined the photo-degradation efficiency of $CoSe_2$-Graphene-$TiO_2$ ($CoSe_2-G-TiO_2$) nanocomposites under visible light irradiation using rhodamine B (RhB) as standard dye. $CoSe_2-G-TiO_2$ nanocomposites were synthesized by ultrasonication and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopic analysis and UV-Vis absorbance spectra analysis. Our results show that the $CoSe_2-G-TiO_2$ nanocomposite exhibited significant photo degradation efficiency compared to pure $TiO_2$ and $CoSe_2-G$, approximately 85.2% of the rhodamine (Rh B) degraded after 2.5 h. It is concluded that the $CoSe_2-G-TiO_2$ nanocomposite is a promising candidate for use in dye pollutants.

Keywords

References

  1. R. Vinu and G. Madras, "Kinetics of Sonophotocatalytic Degradation of Anionic Dyes with Nano-$TiO_2$," Environ. Sci. Technol., 43 [2] 473-79 (2009). https://doi.org/10.1021/es8025648
  2. S. S. Martinez and E. V. Uribe, "Enhanced Sonochemical Degradation of Azure B Dye by the ElectroFenton Process," Ultrason. Sonochem., 19 [1] 174-78 (2012). https://doi.org/10.1016/j.ultsonch.2011.05.013
  3. R. Pelegrini, P. Peralta-Zamora, A. R. de Andrade, J. Reyes, and N. Duran, "Electrochemically Assisted Photocatalytic Degradation of Reactive Dyes," Appl. Catal., B, 22 [2] 83-90 (1999). https://doi.org/10.1016/S0926-3373(99)00037-5
  4. A. H. Konsowa, M. E. Ossman, Y. S. Chen, and J. C. Crittenden, "Decolorization of Industrial Wastewater by Ozonation Followed by Adsorption on Activated Carbon," J. Hazard. Mater., 176 [1] 181-85 (2010). https://doi.org/10.1016/j.jhazmat.2009.11.010
  5. S. W. Won, S. B. Choi, B. W. Chung, D. Park, J. M. Park, and Y. S. Yun, "Biosorptive Decolorization of Reactive Orange 16 Using the Waste Biomass of Corynebacterium Glutamicum," Ind. Eng. Chem. Res., 43 [24] 7865-69 (2004). https://doi.org/10.1021/ie049559o
  6. Y. M. Slokar and A. M. Le Marechal, "Methods of Decoloration of Textile Wastewaters," Dyes Pigm., 37 [4] 335-56 (1998). https://doi.org/10.1016/S0143-7208(97)00075-2
  7. Y. Z. Xu, R. E. Lebrun, P. J. Gallo, and P. Blond, "Treatment of Textile Dye Plant Effluent by Nanofiltration Membrane," Sep. Sci. Technol., 34 [13] 2501-19 (1999). https://doi.org/10.1081/SS-100100787
  8. R. Ahmad, P. K. Mondal, and S. Q. Usmani, "Hybrid UASFBAerobic Bioreactor for Biodegradation of Acid Yellow-36 in Wastewater," Bioresour. Technol., 101 [10] 3787-90 (2010). https://doi.org/10.1016/j.biortech.2009.12.116
  9. Y. You, S. Y. Zhang, L. Wan, and D. F. Xu, "Preparation of Continuous $TiO_2$ Fibers by Sol-Gel Method and its Photocatalytic Degradation on Formaldehyde," Appl. Surf. Sci., 258 [8] 3469-74 (2012). https://doi.org/10.1016/j.apsusc.2011.11.099
  10. F. Deng, Y. X. Li, X. B. Luo, L. X. Yang, and X. M. Tu, "Preparation of Conductive Polypyrrole/$TiO_2$ Nanocomposite via Surface Molecular Imprinting Technique and its Photocatalytic Activity under Simulated Solar Light Irradiation," Colloids Surf., A, 395 183-89 (2012). https://doi.org/10.1016/j.colsurfa.2011.12.029
  11. J. G. Yu, Q. J. Xiang, and M. H. Zhou, "Preparation, Characterization and Visible-Light-Driven Photocatalytic Activity of Fe-Doped Titania Nanorods and First-Principles Study for Electronic Structures," Appl. Catal., B, 90 [3] 595-602 (2009). https://doi.org/10.1016/j.apcatb.2009.04.021
  12. K. Woan, G. Pyrgiotakis, and W. Sigmund, "Photocatalytic Carbon-Nanotube-$TiO_2$ Composites," Adv. Mater., 21 [21] 2233-39 (2009). https://doi.org/10.1002/adma.200802738
  13. J. Wang, D. N. Tafen, J. P. Lewis, Z. L. Hong, A. Manivannan, M. J. Zhi, M. Li, and N. Q. Wu, "Origin of Photocatalytic Activity of Nitrogen-Doped $TiO_2$ Nanobelts," J. Am. Chem. Soc., 131 [34] 12290-97 (2009). https://doi.org/10.1021/ja903781h
  14. M. J. Allen, V. C. Tung, and R. B. Kaner, "Honeycomb Carbon: A Review of Graphene," Chem. Rev., 110 [1] 132-45 (2010). https://doi.org/10.1021/cr900070d
  15. A. K. Geim, "Graphene: Status and Prospects," Science, 324 [5934] 1530-34 (2009). https://doi.org/10.1126/science.1158877
  16. J. S. Lee, K. H. You, and C. B. Park, "Highly Photoactive, Low Bandgap $TiO_2$ Nanoparticles Wrapped by Graphene," Adv. Mater., 24 [8] 1084-88 (2012). https://doi.org/10.1002/adma.201104110
  17. J. B. Shi, P. F. Wu, C. T. Kao, M. W. Lee, C. C. Chan, P. C. Yang, C. L. Lin, R. Y. Huang, Y. J. Huang, and S. K. Lin, "Influence of Selenization Temperature on Synthesis, Morphology, and Properties of Nanostructured $CoSe_2$ Films," Cryst. Res. Technol., 50 [2] 155-59 (2015). https://doi.org/10.1002/crat.201400294
  18. K. Ullah, Z. Lei, S. Ye, A. Ali, and W.-C. Oh, "Microwave Synthesis of a $CoSe_2$/Graphene-$TiO_2$ Heterostructure for Improved Hydrogen Evolution from Aqueous Solutions in the Presence of Sacrificial Agents," RSC Adv., 5 [24] 18841-49 (2015). https://doi.org/10.1039/C5RA00065C
  19. K. Ullah, Z.-D. Meng, S. Ye, L. Zhu, and W.-C. Oh, "Synthesis and Characterization of Novel PbS-Raphene/$TiO_2$ Composite with Enhanced Photocatalytic Activity," J. Ind. Eng. Chem., 20 [3] 1035-42 (2014). https://doi.org/10.1016/j.jiec.2013.06.040
  20. Q. Xiang, J. Yu, and M. Jaroniec, "Synergetic Effect of $MoS_2$ and Graphene as Cocatalysts for Enhanced Photocatalytic $H_2$ Production Activity of $TiO_2$ Nanoparticles," J. Am. Chem. Soc., 134 [15] 6575-78 (2012). https://doi.org/10.1021/ja302846n
  21. K. Ullah, S. Ye, S.-B. Jo, L. Zhu, K.-Y. Cho, and W.-C. Oh, "Optical and Photocatalytic Properties of Novel Heterogeneous $PtSe_2$-Graphene/$TiO_2$ Nanocomposites Synthesized via Ultrasonic Assisted Techniques," Ultrason. Sonochem., 21 [5] 1849-57 (2014). https://doi.org/10.1016/j.ultsonch.2014.04.016
  22. Q. Xiang, J. Yu, and M. Jaroniec, "Enhanced Photocatalytic $H_2$-Production Activity of Graphene-Modified Titania Nanosheets," Nanoscale, 3 [9] 3670-78 (2011). https://doi.org/10.1039/c1nr10610d
  23. G. M. Zhou, D.-W. Wang, L.-C. Yin, N. Li, F. Li, and H.-M. Cheng, "Oxygen Bridges between NiO Nanosheets and Graphene for Improvement of Lithium Storage," ACS Nano, 6 [4] 3214-23 (2012). https://doi.org/10.1021/nn300098m
  24. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, and A. C. Ferrari, "Monitoring Dopants by Raman Scattering in an Electrochemically Top-Gated Graphene Transistor," Nat. Nanotechnol., 3 [4] 210-15 (2008). https://doi.org/10.1038/nnano.2008.67
  25. Z. H. Ni, T. Yu, Z. Q. Luo, Y. Y. Wang, L. Liu, C. P. Wong, J. M. Miao, W. Huang, and Z. X. Shen, "Probing Charged Impurities in Suspended Graphene Using Raman Spectroscopy," ACS Nano, 3 [3] 569-74 (2009). https://doi.org/10.1021/nn900130g
  26. Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, "Uniaxial Strain on Graphene: Raman Spectroscopy Study and Band-Gap Opening," ACS Nano, 2 [11] 2301-5 (2008). https://doi.org/10.1021/nn800459e

Cited by

  1. Evaluation of dual layered photoanode for enhancement of visible-light-driven applications vol.9, pp.29, 2017, https://doi.org/10.1039/c9ra02074h
  2. RECENT AND FUTURE PROSPECTIVE OF VARIOUS PHOTO-CATALYSTS FOR ENVIRONMENTAL POLLUTION AND ENERGY PRODUCTION: A REVIEW vol.28, pp.9, 2017, https://doi.org/10.1142/s0218625x21300021