Enhanced catalytic activity of Pt counter electrodes employing ZnO nanorods for dye-sensitized solar cells

Pt-ZnO 상대전극을 가지는 염료감응형 태양전지의 광전변환 특성 분석

  • Published : 2011.05.26

Abstract

In order to increase the energy conversion efficiency of dye-sensitized solar cells (DSSCs), we employed a counter electrode that was platinum coated using a doctor blade technique on synthesized ZnO nanostructures on fluorinedoped tin oxide (FTO). The ZnO nanostructures possessing high electrochemical activity and large surface area of the counter electrode were grown by a chemical bath deposition (CBD) method at various times, 2, 4, and 8 h. The efficiency of DSSC with the Pt-ZnO counter electrode was improved 7.01% (grown for 2 h), 7.63% (grown for 4 h), and 6.13% (grown for 8 h), respectively. Compared with a standard DSSC without ZnO nanostructures, whose efficiency was 6.27%, the energy conversion efficiency increased approximately 22% for the DSSC with the Pt-ZnO (grown for 4 h) electrode. It indicates that the Pt coated on the ZnO nanostructure improves the electrocatalytic activity of the counter electrode.

Keywords