• Title/Summary/Keyword: stable hypersurface

Search Result 13, Processing Time 0.022 seconds

STABLE MINIMAL HYPERSURFACES IN THE HYPERBOLIC SPACE

  • Seo, Keom-Kyo
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.253-266
    • /
    • 2011
  • In this paper we give an upper bound of the first eigenvalue of the Laplace operator on a complete stable minimal hypersurface M in the hyperbolic space which has finite $L^2$-norm of the second fundamental form on M. We provide some sufficient conditions for minimal hypersurface of the hyperbolic space to be stable. We also describe stability of catenoids and helicoids in the hyperbolic space. In particular, it is shown that there exists a family of stable higher-dimensional catenoids in the hyperbolic space.

ON THE EXISTENCE OF STABLE MINIMAL HYPERSURFACES OF THE THREE DIMENSIONAL CRITICAL POINT EQUATION

  • CHANG, JEONGWOOK
    • Honam Mathematical Journal
    • /
    • v.28 no.3
    • /
    • pp.409-415
    • /
    • 2006
  • On a compact oriented smooth 3-dimensional manifold (M, g), we consider the critical point equation(CPE) defined as $z_g=s^{{\prime}*}_g(f)$. Under CPE, it is shown in [5] that every stable minimal hypersurface in M is contained in ${\varphi}^{-1}(0)$ for ${\varphi}{\in}$ ker $s^{{\prime}*}_g$. We study analytic and geometric conditions under which the stable minimal hypersurface in M does not exist.

  • PDF

STABLE MINIMAL HYPERSURFACES IN A CRITICAL POINT EQUATION

  • HWang, Seung-Su
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.775-779
    • /
    • 2005
  • On a compact n-dimensional manifold $M^n$, a critical point of the total scalar curvature functional, restricted to the space of metrics with constant scalar curvature of volume 1, satifies the critical point equation (CPE), given by $Z_g\;=\;s_g^{1\ast}(f)$. It has been conjectured that a solution (g, f) of CPE is Einstein. The purpose of the present paper is to prove that every compact stable minimal hypersurface is in a certain hypersurface of $M^n$ under an assumption that Ker($s_g^{1\ast}{\neq}0$).

TOPOLOGICAL ASPECTS OF THE THREE DIMENSIONAL CRITICAL POINT EQUATION

  • CHANG, JEONGWOOK
    • Honam Mathematical Journal
    • /
    • v.27 no.3
    • /
    • pp.477-485
    • /
    • 2005
  • Let ($M^n$, g) be a compact oriented Riemannian manifold. It has been conjectured that every solution of the equation $z_g=D_gdf-{\Delta}_gfg-fr_g$ is an Einstein metric. In this article, we deal with the 3 dimensional case of the equation. In dimension 3, if the conjecture fails, there should be a stable minimal hypersurface in ($M^3$, g). We study some necessary conditions to guarantee that a stable minimal hypersurface exists in $M^3$.

  • PDF

FUNDAMENTAL TONE OF COMPLETE WEAKLY STABLE CONSTANT MEAN CURVATURE HYPERSURFACES IN HYPERBOLIC SPACE

  • Min, Sung-Hong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.369-378
    • /
    • 2021
  • In this paper, we give an upper bound for the fundamental tone of stable constant mean curvature hypersurfaces in hyperbolic space. Let M be an n-dimensional complete non-compact constant mean curvature hypersurface with finite L2-norm of the traceless second fundamental form. If M is weakly stable, then λ1(M) is bounded above by n2 + O(n2+s) for arbitrary s > 0.

STRUCTURE OF STABLE MINIMAL HYPERSURFACES IN A RIEMANNIAN MANIFOLD OF NONNEGATIVE RICCI CURVATURE

  • Kim, Jeong-Jin;Yun, Gabjin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1201-1207
    • /
    • 2013
  • Let N be a complete Riemannian manifold with nonnegative Ricci curvature and let M be a complete noncompact oriented stable minimal hypersurface in N. We prove that if M has at least two ends and ${\int}_M{\mid}A{\mid}^2\;dv={\infty}$, then M admits a nonconstant harmonic function with finite Dirichlet integral, where A is the second fundamental form of M. We also show that the space of $L^2$ harmonic 1-forms on such a stable minimal hypersurface is not trivial. Our result is a generalization of one of main results in [12] because if N has nonnegative sectional curvature, then M admits no nonconstant harmonic functions with finite Dirichlet integral. And our result recovers a main theorem in [3] as a corollary.

RIGIDITY OF IMMERSED SUBMANIFOLDS IN A HYPERBOLIC SPACE

  • Nguyen, Thac Dung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1795-1804
    • /
    • 2016
  • Let $M^n$, $2{\leq}n{\leq}6$ be a complete noncompact hypersurface immersed in ${\mathbb{H}}^{n+1}$. We show that there exist two certain positive constants 0 < ${\delta}{\leq}1$, and ${\beta}$ depending only on ${\delta}$ and the first eigenvalue ${\lambda}_1(M)$ of Laplacian such that if M satisfies a (${\delta}$-SC) condition and ${\lambda}_1(M)$ has a lower bound then $H^1(L^2(M))=0$. Excepting these two conditions, there is no more additional condition on the curvature.

L2 HARMONIC 1-FORMS ON SUBMANIFOLDS WITH WEIGHTED POINCARÉ INEQUALITY

  • Chao, Xiaoli;Lv, Yusha
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.583-595
    • /
    • 2016
  • In the present note, we deal with $L^2$ harmonic 1-forms on complete submanifolds with weighted $Poincar{\acute{e}}$ inequality. By supposing submanifold is stable or has sufficiently small total curvature, we establish two vanishing theorems for $L^2$ harmonic 1-forms, which are some extension of the results of Kim and Yun, Sang and Thanh, Cavalcante Mirandola and $Vit{\acute{o}}rio$.

STABLE MINIMAL HYPERSURFACES WITH WEIGHTED POINCARÉ INEQUALITY IN A RIEMANNIAN MANIFOLD

  • Nguyen, Dinh Sang;Nguyen, Thi Thanh
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.123-130
    • /
    • 2014
  • In this note, we investigate stable minimal hypersurfaces with weighted Poincar$\acute{e}$ inequality. We show that we still get the vanishing property without assuming that the hypersurfaces is non-totally geodesic. This generalizes a result in [2].