DOI QR코드

DOI QR Code

ON THE STABILITY OF SPACELIKE HYPERSURFACES WITH HIGHER ORDER MEAN CURVATURE IN A DE SITTER SPACE

  • Zhang, Shicheng (School of Mathematics and Statistics Jiangsu Normal University)
  • Received : 2013.08.31
  • Published : 2014.09.30

Abstract

The closed spacelike hypersurfaces with higher order mean curvature is discussed in a de Sitter space. The hypersurface is proved stable if and only if it is totally umbilical.

Keywords

References

  1. H. Alencar, M. do Carmo, and A. G. Colares, Stable hypersurfaces with constant scalar curvature, Math. Z. 213 (1993), no. 1, 117-131. https://doi.org/10.1007/BF03025712
  2. J. L. Barbosa and M. do Carmo, Stability of hypersurfaces with constant mean curvature, Math. Z. 185 (1984), no. 3, 339-353. https://doi.org/10.1007/BF01215045
  3. J. L. Barbosa, M. do Carmo, and J. Eschenburg, Stability of hypersurfaces of constant mean curvature in Riemannian manifolds, Math. Z. 197 (1988), no. 1, 123-138. https://doi.org/10.1007/BF01161634
  4. J. L. Barbosa and A. G. Colares, Stability of hypersurfaces with constant r-mean curvature, Ann. Global Anal. Geom. 15 (1997), no. 3, 277-297. https://doi.org/10.1023/A:1006514303828
  5. J. L. M. Barbosa and V. Oliker, Stable spacelike hypersurfaces with constant mean curvature in Lorentz spaces, Geometry and global analysis (Sendai, 1993), 161-164, Tohoku Univ., Sendai, 1993.
  6. A. Brasil Jr. and A. G. Colares. Stability of spacelike hypersurfaces with constant r-mean curvature in de Sitter space, Proceedings of the XII Fall Workshop on Geometry and Physics, 139-145, Publ. R. Soc. Mat. Esp., 7, R. Soc. Mat. Esp., Madrid, 2004.
  7. F. Camargo, A. Caminha, M. da Silva, and H. de Lima, On the r-stability of spacelike hypersurfaces, J. Geom. Phys. 60 (2010), no. 10, 1402-1410. https://doi.org/10.1016/j.geomphys.2010.05.004
  8. Q. M. Cheng, Complete space-like hypersurfaces of a de Sitter space with r = aH, Mem. Fac. Sci. Kyushu Univ. Ser. A 44 (1990), no. 2, 67-77.
  9. H. Cheng and X. Wang, Stability and eigenvalue estimates of linear weingarten hyper-surfaces in a sphere, J. Math. Anal. Appl. 397 (2013), no. 2, 658-670. https://doi.org/10.1016/j.jmaa.2012.08.003
  10. S. Y. Cheng and S. T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann. 225 (1977), no. 3, 195-204. https://doi.org/10.1007/BF01425237
  11. X. Liu and J. Deng, Stable space-like hypersurfaces in the de Sitter space, Arc. Math. 40 (2004), no. 2, 111-117.
  12. M. A. Velasquez, A. F. de Sousa, and H. F. de Lima, On the stability of hypersurfaces in space forms, J. Math. Anal. Appl. 406 (2013), no. 1, 134-146. https://doi.org/10.1016/j.jmaa.2013.04.045
  13. H. Rosenberg, Hypersurfaces of constant curvature in space forms, Bull. Sci. Math. 117 (1993), no. 2, 211-239.