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STABLE MINIMAL HYPERSURFACES
IN A CRITICAL POINT EQUATION

SEUNGSU HwANG

ABSTRACT. On a compact n—dimensional manifold M™, a criti-
cal point of the total scalar curvature functional, restricted to the
space of metrics with constant scalar curvature of volume 1, sati-
fies the critical point equation (CPE), given by z, = sy (f). It has
been conjectured that a solution (g, f} of CPE is Einstein. The
purpose of the present paper is to prove that every compact stable
minimal hypersurface is in a certain hypersurface of M™ under an
assumption that Ker(sy) # 0.

1. Introduction

Let M™ be an n—dimensional compact manifold and M; the set
of smooth Riemannian structures on M” of volume 1. Given a metric

g € My, let §: M; — R be the total scalar curvature functional defined
by

S(g):/ s4dug,
MTL

where s, is the scalar curvature of g and dv, the volume form determined
by the metric and orientation. Due to the resolution of Yamabe problem,

we may consider the set C of constant scalar curvature(csc, hereafter)
metrics

C={g€ Mi|sy: constant}.

It has been conjectured in Conjecture A, introduced in {1] and [4], that
the critical points of S restricted to C are Einstein metrics.
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The Euler-Lagrange equations for a critical point g of this restricted
variational problem may be written as the following critical point equa-
tion(CPE, hereafter):

(1) Zg = s’g*(f)7
where 24 is the traceless Ricci tensor, f is a function on M™, and
3;;*(f) = Dydf — gAyf — frg,

where 74 is the Ricci tensor.

Conjecture A implies that z, = 0, or f € Ker(sy"). Hence, it is natural
to assume that Ker(sy) # 0; otherwise, the validity of Conjecture A
fails, which is not true in. some cases. Therefore, we may assume that
Ker(sy) # 0 throughout the present paper.

In this paper, under the assumption that Ker(s;*) # 0, we study
about compact oriented stable minimal hypersurfaces of M", and prove
the following main theorem:

MAIN THEOREM. Let ¢ € Ker(sy) and T' = ¢~ 1(0). Then every
compact oriented stable minimal hypersurfaces of M™ should be con-
tained in I'.

It was shown in [2] that the set I is a totally geodesic submanifold
of M™. Therefore, it follows immediately from Main Theorem that

COROLLARY 1. Every compact oriented stable minimal hypersurface
of M™ is totally geodesic [3].

REMARK 1. In view of the following two remarks, we may conclude
that our main theorem will be useful in understanding the topology of
M™ and the structure of I

(i) For n < 7, it is well known that each element in H,_1(M",Z) can
be represented by sums of embedded compact oriented stable minimal
hypersurfaces [6], p.51. Therefore, the informations about the topology
of M™ for n < 7 may be obtained by studying such hypersurfaces.

(ii) For n = 3, it was proved in [5] that Hy(M3,Z) = O ifand only if T
is connected and that M?3 is diffeomorphic to S2 in this case; in fact, this
theorem gives a relationship between Ho(M?3,Z) and the submanifold T

2. The proof of main theorem

This section is devoted to the proof of the Main Theorem. Let f be
a solution of CPE (1), ¢ € Ker(s}), and I' = ¢~ 1(0) = {z € M"|p(x) =
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0}. Also let ¥ be a compact oriented stable minimal hypersurface of
M™. Then our Main Theorem may be restated as ¥ C T.

Now, assume that ¥ is not contained in I'. Our Main Theorem will be
proved by showing that this assumption leads to a contradiction. Under
the assumption, it will be proved after the following two Lemmas.

LEMMA 2. The oriented stable minimal hypersurface ¥ is properly
contained in Mo, where My = {x € M™|f(x) < —1}. In other words,
f<—-lonX.

Proor. Consider the following three cases, as in the proof of the
Main Theorem of [4]:

CAasE A. X C My U oM.
Case B. X C (M™\ My).
Case C. ENMy+#¢and TN (M"\ (MyUOMy)) # ¢.

Using the stability condition and co-area formula, it may be easily shown
that the last two cases do not occur(Refer to [5] for the detailed proof).
Therefore, the only possible remaining case is Case A. Hence, our Lemma
is proved. O

The proof of the following Lemma, is essentially same with the Con-
tention 1 in the proof of Lemma 3 of [5], except that the dimension is
not restricted to n = 3.

LemMA 3. We have [; ¢ =0.

ProOF. Under our assumption, the Laplacian A, and the intrinsic
Laplacian As; on the minimal hypersurface ¥ are related by

(2) Agp = Asp + Dydp(v,v),

where v is a normal vector field on ¥. On the other hand, the equation
sy (#) = 0 is equivalent to

3) 0= Dydp — (Agip)g — rg
with Agp = —%g&, from which we have
(4) ng@(y, U) = 90719(7/7 V) -+ AgLP'

Hence, substitution of (4) into (2) gives

(5) pro(v,v) = —Asyp.
Replacing ¢ by f in (2) also gives

(6) Agf = Asf+ Dydf (v,v)
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and

(7) Dydf (v,v) = (1+ firy(v,v) — 2 + Ay,
since

(8) rg— 2L = Dydf — g, f — fry

in virtue of (1). Thus, substitution of (7) into (6) gives
(9) hry(v,v) = —Axf + 2,

where h = 1+ f. In virtue of (5) and (9), we have

(10) /EhAch = —/Egohrg(l/, v) —'—‘/EC,DAgf— i—gcp.

On the other hand, since ¥ is a manifold without boundary, it follows
from the Green’s theorem and Stoke’s theorem that

[ hasse— pnss = [ divs(ndg) - divs(dr) = o
b =

Hence, (10) may be reduced to the following equation, proving our
Lemma:
(11)
g
- =0. O
n J» 14

Now, we are ready to prove our Main Theorem.

PROOF OF MAIN THEOREM. Assume that ¥ is not contained in I'.

Then in virtue of Lemma 3, ¢ has positive and negative values on X.
Let ¥4 be defined by

Lr={zeX| p(z) >0}

Then our assumption implies that ¥, is not empty. Let v be a tangent
vector of ¥ which is an outward normal vector field along 0%X,. It is
clear from the definition of ¥ that we have v(p) < 0 along 0¥.

On the other hand, it follows from (5) and (9) that

(12) ~hAzp = phry(v,v) = —pAgh + Lo,

Hence integration over X gives

8
- hAzsoz—/ pAsh+ -2 [ o
S5 > T+ nJs,



Stable minimal hypersurfaces in a critical point equation 779

with
/ hAsp = / divs(hdi) — g(dh, dp)
o oy
— / hur(p) — / gx(dh, dp)
and

[ etsh= [ divs(ean) - gs(ap.an) = - [ gs(ap,dn)
o s, w,
Consequently,

(13) [ o= [

The right-hand side of (13) is positive in virtue of the definition of X,
while the left-hand side of (13) is negative since A < 0 on X in virtue of
Lemma 3 and v(p) < 0 on 9X in virtue of the discussion of the previous
paragraph. Hence, the assumption that ¥ is not contained in I leads to
a contradiction (13), completing the proof of our Main Theorem.
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