• Title/Summary/Keyword: stability, superstability

Search Result 38, Processing Time 0.029 seconds

ON THE SUPERSTABILITY OF THE p-RADICAL SINE TYPE FUNCTIONAL EQUATIONS

  • Kim, Gwang Hui
    • The Pure and Applied Mathematics
    • /
    • v.28 no.4
    • /
    • pp.387-398
    • /
    • 2021
  • In this paper, we will find solutions and investigate the superstability bounded by constant for the p-radical functional equations as follows: $f\(\sqrt[p]{\frac{x^p+y^p}{2}}\)^2-f\(\sqrt[p]{\frac{x^p-y^p}{2}}\)^2=\;\{(i)\;f(x)f(y),\\(ii)\;g(x)f(y),\\(iii)\;f(x)g(y),\\(iv)\;g(x)g(y).$ with respect to the sine functional equation, where p is an odd positive integer and f is a complex valued function. Furthermore, the results are extended to Banach algebra.

ON THE STABILITY OF PEXIDER TYPE TRIGONOMETRIC FUNCTIONAL EQUATIONS

  • Kim, Gwang Hui
    • Korean Journal of Mathematics
    • /
    • v.16 no.3
    • /
    • pp.369-378
    • /
    • 2008
  • The aim of this paper is to study the stability problem for the pexider type trigonometric functional equation f(x + y) − f(x−y) = 2g(x)h(y), which is related to the d'Alembert, the Wilson, the sine, and the mixed trigonometric functional equations.

  • PDF

STABILITY OF A FUNCTIONAL EQUATION OBTAINED BY COMBINING TWO FUNCTIONAL EQUATIONS

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.415-422
    • /
    • 2004
  • In this paper, we investigate the Hyers-Ulam stability and the super-stability of the functional equation f(x+y+rxy) = f(x)+f(y)+rxf(y)+ryf(x) which is obtained by combining the additive Cauchy functional equation and the derivation functional equation.

A FIXED POINT APPROACH TO THE STABILITY OF THE FUNCTIONAL EQUATION RELATED TO DISTANCE MEASURES

  • Shiny, Hwan-Yong;Kim, Gwang Hui
    • Korean Journal of Mathematics
    • /
    • v.24 no.2
    • /
    • pp.297-305
    • /
    • 2016
  • In this paper, by using fixed point theorem, we obtain the stability of the following functional equations $$f(pr,qs)+g(ps,qr)={\theta}(p,q,r,s)f(p,q)h(r,s)\\f(pr,qs)+g(ps,qr)={\theta}(p,q,r,s)g(p,q)h(r,s)$$, where G is a commutative semigroup, ${\theta}:G^4{\rightarrow}{\mathbb{R}}_k$ a function and f, g, h are functionals on $G^2$.