References
- J. Brzdek, A. Najdecki and B. Xu, Two general theorems on superstability of functional equations, Aequationes Math., Doi: 10.1007/s00010-014-0266-6.[1].
- J. K. Chung, P. Kannappan, C. T. Ng and P. K. Sahoo, Measures of distance between probability distributions, J. Math. Anal. Appl. 138 (1989), 280-292. https://doi.org/10.1016/0022-247X(89)90335-1
- J. B. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bulletin of the American Mathematical Society 74 (1968), 305-309. https://doi.org/10.1090/S0002-9904-1968-11933-0
- M. Hosszu, On the functional equation f(x+y, z)+f(x, y) = f(x, y+z)+f(y, z), Periodica Math. Hungarica 1 (3) (1971), 213-216. https://doi.org/10.1007/BF02029146
- Pl. Kannappan and P. K. Sahoo, Sum form distance measures between probability distributions and functional equations, Int. J. of Math. & Stat. Sci. 6 (1997), 91-105.
- Pl. Kannappan, P. K. Sahoo and J. K. Chung, On a functional equation associated with the symmetric divergence measures, Utilitas Math. 44 (1993), 75-83.
- G. H. Kim, The Stability of the d'Alembert and Jensen type functional equations, Jour. Math. Anal & Appl. 325 (2007), 237-248. https://doi.org/10.1016/j.jmaa.2006.01.062
- Pl. Kannappan and G. H. Kim, On the stability of the generalized cosine functional equations, Ann. Acad. Pedagog. Crac. Stud. Math. 1 (2001), 49-58.
- G. H. Kim, On the Stability of the pexiderized trigonometric functional equation, Appl. Math. Compu. 203 (2008), 99-105.
- G. H. Kim and Y.H. Lee, The superstability of the Pexider type trigonometric functional equation, Math. Ineq. & Appl., submitted.
- G. H. Kim and Y.H. Lee, Boundedness of approximate trigonometric functional equations, Appl. Math. Lett. 331 (2009), 439-443.
- G. H. Kim, On the Stability of trigonometric functional equations, Ad. Diff. Eq. Vol 2007, Article ID 90405, (2007).
- G. H. Kim and Sever S. Dragomir, On the Stability of generalized d'Alembert and Jensen functional equation, Intern. Jour. Math. & Math. Sci., Article ID 43185, DOI 10.1155 (2006), 1-12. https://doi.org/10.1155/IJMMS/2006/43185
- G. H. Kim and Y. W. Lee Superstability of Pexiderized functional equations arising from distance measures, J. Nonlinear Sci. Appl. 9 (2016), 413-423. https://doi.org/10.22436/jnsa.009.02.07
- G. H. Kim and P. K. Sahoo, Stability of a Pexider type functional equation related to distance measures, Jour. Math. Ineq. 9 (4) (2015), 11691179.
- G. H. Kim and P. K. Sahoo, Stability of a functional equation related to distance measure - I, Appl. Math. Lett. 24 (2011), 843-849. https://doi.org/10.1016/j.aml.2010.12.027
- G. H. Kim and P. K. Sahoo, Stability of a functional equation related to distance measure - II, Ann. Funct. Anal. 1 (2010) 26-35. https://doi.org/10.15352/afa/1399900989
- Y. W. Lee and G. H. Kim Superstability of the functional equation with a cocycle related to distance measures, Math. Ineq. & Appl., (2014), 2014:393 doi:10.1186/1029-242X-2014-393
- Y. W. Lee and G. H. Kim Superstability of the functional equation related to distance measures, Jour. Ineq. & Appl. 20152015:352, DOI: 10.1186/s13660-015-0880-4
- T. Riedel and P. K. Sahoo, On a generalization of a functional equation associated with the distance between the probability distributions, Publ. Math. Debrecen 46 (1995), 125-135.
- T. Riedel and P. K. Sahoo, On two functional equations connected with the characterizations of the distance measures, Aequationes Math. 54 (1998), 242-263.
- P. K. Sahoo, On a functional equation associated with stochastic distance measures, Bull. Korean Math. Soc. 36 (1999), 287-303.
- T. Riedel and P. K. Sahoo, On a generalization of a functional equation associated with the distance between the probability distributions, Publ. Math. Debrecen 46 (1995), 125-135.
- J. Tabor, Hyers theorem and the cocycle property, Fumctional equations-Results and Advaces, Kluwer Academic Publ.(Z. Daroczy and Z. Pales), (2002), 275-290.