DOI QR코드

DOI QR Code

A FIXED POINT APPROACH TO THE STABILITY OF THE FUNCTIONAL EQUATION RELATED TO DISTANCE MEASURES

  • Received : 2016.02.11
  • Accepted : 2016.05.17
  • Published : 2016.06.30

Abstract

In this paper, by using fixed point theorem, we obtain the stability of the following functional equations $$f(pr,qs)+g(ps,qr)={\theta}(p,q,r,s)f(p,q)h(r,s)\\f(pr,qs)+g(ps,qr)={\theta}(p,q,r,s)g(p,q)h(r,s)$$, where G is a commutative semigroup, ${\theta}:G^4{\rightarrow}{\mathbb{R}}_k$ a function and f, g, h are functionals on $G^2$.

Keywords

References

  1. J. Brzdek, A. Najdecki and B. Xu, Two general theorems on superstability of functional equations, Aequationes Math., Doi: 10.1007/s00010-014-0266-6.[1].
  2. J. K. Chung, P. Kannappan, C. T. Ng and P. K. Sahoo, Measures of distance between probability distributions, J. Math. Anal. Appl. 138 (1989), 280-292. https://doi.org/10.1016/0022-247X(89)90335-1
  3. J. B. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bulletin of the American Mathematical Society 74 (1968), 305-309. https://doi.org/10.1090/S0002-9904-1968-11933-0
  4. M. Hosszu, On the functional equation f(x+y, z)+f(x, y) = f(x, y+z)+f(y, z), Periodica Math. Hungarica 1 (3) (1971), 213-216. https://doi.org/10.1007/BF02029146
  5. Pl. Kannappan and P. K. Sahoo, Sum form distance measures between probability distributions and functional equations, Int. J. of Math. & Stat. Sci. 6 (1997), 91-105.
  6. Pl. Kannappan, P. K. Sahoo and J. K. Chung, On a functional equation associated with the symmetric divergence measures, Utilitas Math. 44 (1993), 75-83.
  7. G. H. Kim, The Stability of the d'Alembert and Jensen type functional equations, Jour. Math. Anal & Appl. 325 (2007), 237-248. https://doi.org/10.1016/j.jmaa.2006.01.062
  8. Pl. Kannappan and G. H. Kim, On the stability of the generalized cosine functional equations, Ann. Acad. Pedagog. Crac. Stud. Math. 1 (2001), 49-58.
  9. G. H. Kim, On the Stability of the pexiderized trigonometric functional equation, Appl. Math. Compu. 203 (2008), 99-105.
  10. G. H. Kim and Y.H. Lee, The superstability of the Pexider type trigonometric functional equation, Math. Ineq. & Appl., submitted.
  11. G. H. Kim and Y.H. Lee, Boundedness of approximate trigonometric functional equations, Appl. Math. Lett. 331 (2009), 439-443.
  12. G. H. Kim, On the Stability of trigonometric functional equations, Ad. Diff. Eq. Vol 2007, Article ID 90405, (2007).
  13. G. H. Kim and Sever S. Dragomir, On the Stability of generalized d'Alembert and Jensen functional equation, Intern. Jour. Math. & Math. Sci., Article ID 43185, DOI 10.1155 (2006), 1-12. https://doi.org/10.1155/IJMMS/2006/43185
  14. G. H. Kim and Y. W. Lee Superstability of Pexiderized functional equations arising from distance measures, J. Nonlinear Sci. Appl. 9 (2016), 413-423. https://doi.org/10.22436/jnsa.009.02.07
  15. G. H. Kim and P. K. Sahoo, Stability of a Pexider type functional equation related to distance measures, Jour. Math. Ineq. 9 (4) (2015), 11691179.
  16. G. H. Kim and P. K. Sahoo, Stability of a functional equation related to distance measure - I, Appl. Math. Lett. 24 (2011), 843-849. https://doi.org/10.1016/j.aml.2010.12.027
  17. G. H. Kim and P. K. Sahoo, Stability of a functional equation related to distance measure - II, Ann. Funct. Anal. 1 (2010) 26-35. https://doi.org/10.15352/afa/1399900989
  18. Y. W. Lee and G. H. Kim Superstability of the functional equation with a cocycle related to distance measures, Math. Ineq. & Appl., (2014), 2014:393 doi:10.1186/1029-242X-2014-393
  19. Y. W. Lee and G. H. Kim Superstability of the functional equation related to distance measures, Jour. Ineq. & Appl. 20152015:352, DOI: 10.1186/s13660-015-0880-4
  20. T. Riedel and P. K. Sahoo, On a generalization of a functional equation associated with the distance between the probability distributions, Publ. Math. Debrecen 46 (1995), 125-135.
  21. T. Riedel and P. K. Sahoo, On two functional equations connected with the characterizations of the distance measures, Aequationes Math. 54 (1998), 242-263.
  22. P. K. Sahoo, On a functional equation associated with stochastic distance measures, Bull. Korean Math. Soc. 36 (1999), 287-303.
  23. T. Riedel and P. K. Sahoo, On a generalization of a functional equation associated with the distance between the probability distributions, Publ. Math. Debrecen 46 (1995), 125-135.
  24. J. Tabor, Hyers theorem and the cocycle property, Fumctional equations-Results and Advaces, Kluwer Academic Publ.(Z. Daroczy and Z. Pales), (2002), 275-290.