References
- T. Ando, Matrix Young inequalities, Oper. Theory Adv. Appl. 75 (1995), 33-38.
- R. Bellman, Some inequalities for positive definite matrices, in: E.F. Beckenbach (Ed.), General Inequalities 2, Proceedings of the 2nd International Conference on General Inequalities, Birkhauser, Basel, 1980, pp. 89-90.
- E. V. Belmega, M. Jungers and S. Lasaulce, A generalization of a trace inequality for positive definite matrices, Aust. J. Math. Anal. Appl. 7 (2) (2010), Art. 26, 5 pp.
- E. A. Carlen, Trace inequalities and quantum entropy: an introductory course, Entropy and the quantum, 73-140, Contemp. Math., 529, Amer. Math. Soc., Providence, RI, 2010.
- D. Chang, A matrix trace inequality for products of Hermitian matrices, J. Math. Anal. Appl. 237 (1999), 721-725. https://doi.org/10.1006/jmaa.1999.6433
- L. Chen and C.Wong, Inequalities for singular values and traces, Linear Algebra Appl. 171 (1992), 109-120. https://doi.org/10.1016/0024-3795(92)90253-7
- I. D. Coop, On matrix trace inequalities and related topics for products of Hermitian matrix, J. Math. Anal. Appl. 188 (1994), 999-1001. https://doi.org/10.1006/jmaa.1994.1475
- S. S. Dragomir, A converse result for Jensen's discrete inequality via Gruss' inequality and applications in information theory, An. Univ. Oradea Fasc. Mat. 7 (1999/2000), 178-189.
- S. S. Dragomir, On a reverse of Jessen's inequality for isotonic linear functionals, J. Ineq. Pure & Appl. Math., 2 (3) (2001), Article 36.
- S. S. Dragomir, A Gruss type inequality for isotonic linear functionals and applications, Demonstratio Math. 36 (3) (2003), 551-562. Preprint RGMIA Res. Rep. Coll. 5(2002), Suplement, Art. 12. [ONLINE:http://rgmia.org/v5(E).php].
- S. S. Dragomir, Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc. 74 (3) (2006), 471-476. https://doi.org/10.1017/S000497270004051X
- S. S. Dragomir, Bounds for the deviation of a function from the chord generated by its extremities, Bull. Aust. Math. Soc. 78 (2) (2008), 225-248. https://doi.org/10.1017/S0004972708000671
- S. S. Dragomir, Gruss' type inequalities for functions of self-adjoint operators in Hilbert spaces, Preprint, RGMIA Res. Rep. Coll., 11(e) (2008), Art. 11. [ONLINE: http://rgmia.org/v11(E).php].
- S. S. Dragomir, Some inequalities for convex functions of self-adjoint operators in Hilbert spaces, Filomat 23 (3) (2009), 81-92. Preprint RGMIA Res. Rep. Coll., 11(e) (2008), Art. 10. https://doi.org/10.2298/FIL0903081D
- S. S. Dragomir, Some Jensen's type inequalities for twice differentiable functions of self-adjoint operators in Hilbert spaces, Filomat 23 (3) (2009), 211-222. Preprint RGMIA Res. Rep. Coll., 11(e) (2008), Art. 13. https://doi.org/10.2298/FIL0903211D
- S. S. Dragomir, Some new Gruss' type inequalities for functions of self-adjoint operators in Hilbert spaces, Sarajevo J. Math. 6(18), (1) (2010), 89-107. Preprint RGMIA Res. Rep. Coll., 11(e) (2008), Art. 12. [ONLINE: http://rgmia.org/v11(E).php].
- S. S. Dragomir, New bounds for the Cebysev functional of two functions of self-adjoint operators in Hilbert spaces, Filomat 24 (2) (2010), 27-39. https://doi.org/10.2298/FIL1002027D
- S. S. Dragomir, Some Jensen's type inequalities for log-convex functions of self-adjoint operators in Hilbert spaces, Bull. Malays. Math. Sci. Soc. 34 (3) (2011), Preprint RGMIA Res. Rep. Coll., 13(2010), Sup. Art. 2.
- S. S. Dragomir, Some reverses of the Jensen inequality for functions of self-adjoint operators in Hilbert spaces, J. Ineq. & Appl., Vol. 2010, Article ID 496821. Preprint RGMIA Res. Rep. Coll., 11(e) (2008), Art. 15. [ONLINE: http://rgmia.org/v11(E).php].
- S. S. Dragomir, Some Slater's type inequalities for convex functions of self-adjoint operators in Hilbert spaces, Rev. Un. Mat. Argentina, 52 (1) (2011), 109-120. Preprint RGMIA Res. Rep. Coll., 11(e) (2008), Art. 7.
- S. S. Dragomir, Hermite-Hadamard's type inequalities for operator convex functions, Appl. Math. Comp. 218 (2011), 766-772. Preprint RGMIA Res. Rep. Coll., 13(2010), No. 1, Art. 7. https://doi.org/10.1016/j.amc.2011.01.056
- S. S. Dragomir, Hermite-Hadamard's type inequalities for convex functions of self-adjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll., 13 (2) (2010), Art 1.
- S. S. Dragomir, New Jensen's type inequalities for differentiable log-convex functions of self-adjoint operators in Hilbert spaces, Sarajevo J. Math. 19 (1) (2011), 67-80. Preprint RGMIA Res. Rep. Coll., 13(2010), Sup. Art. 2.
- S. S. Dragomir, Operator Inequalities of the Jensen, Cebysev and Gruss Type. Springer Briefs in Mathematics. Springer, New York, 2012. xii+121 pp. ISBN: 978-1-4614-1520-6.
- S. S. Dragomir, Operator Inequalities of Ostrowski and Trapezoidal Type. Springer Briefs in Mathematics. Springer, New York, 2012. x+112 pp. ISBN: 978-1-4614-1778-1
- S. S. Dragomir and N. M. Ionescu, Some converse of Jensen's inequality and applications, Rev. Anal. Numer. Theor. Approx. 23 (1) (1994), 71-78. MR:1325895 (96c:26012).
- S. Furuichi and M. Lin, Refinements of the trace inequality of Belmega, Lasaulce and Debbah, Aust. J. Math. Anal. Appl. 7 (2) (2010), Art. 23, 4 pp.
- T. Furuta, J. Micic Hot, J. Pecaric and Y. Seo, Mond-Pecaric Method in Operator Inequalities. Inequalities for Bounded self-adjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
- G. Helmberg,Introduction to Spectral Theory in Hilbert Space, John Wiley, New York, 1969.
- H. D. Lee, On some matrix inequalities, Korean J. Math. 16 (2) (2008), 565-571.
- L. Liu, A trace class operator inequality, J. Math. Anal. Appl. 328 (2007), 1484-1486. https://doi.org/10.1016/j.jmaa.2006.04.092
- S. Manjegani, Holder and Young inequalities for the trace of operators, Positivity 11 (2007), 239-250. https://doi.org/10.1007/s11117-006-2054-6
- H. Neudecker, A matrix trace inequality, J. Math. Anal. Appl. 166 (1992), 302-303. https://doi.org/10.1016/0022-247X(92)90344-D
- K. Shebrawi and H. Albadawi, Operator norm inequalities of Minkowski type, J. Inequal. Pure Appl. Math. 9 (1) (2008), 1-10, article 26.
- K. Shebrawi and H. Albadawi, Trace inequalities for matrices, Bull. Aust. Math. Soc. 87 (2013), 139-148. https://doi.org/10.1017/S0004972712000627
- B. Simon, Trace Ideals and Their Applications, Cambridge University Press, Cambridge, 1979.
- A. Matkovic, J. Pecaric and I. Peric, A variant of Jensen's inequality of Mercer's type for operators with applications., Linear Algebra Appl. 418 (2006), no. 2-3, 551-564. https://doi.org/10.1016/j.laa.2006.02.030
-
C. A. McCarthy,
$c_p$ , Israel J. Math., 5 (1967), 249-271. https://doi.org/10.1007/BF02771613 - J. Micic, Y. Seo, S.-E. Takahasi and M. Tominaga, Inequalities of Furuta and Mond-Pecaric, Math. Ineq. Appl., 2(1999), 83-111.
- B. Mond and J. Pecaric, Convex inequalities in Hilbert space, Houston J. Math., 19 (1993), 405-420.
- B. Mond and J. Pecaric, On some operator inequalities, Indian J. Math. 35 (1993), 221-232.
- B. Mond and J. Pecaric, Classical inequalities for matrix functions, Utilitas Math., 46 (1994), 155-166.
- S. Simic, On a global upper bound for Jensen's inequality, J. Math. Anal. Appl. 343 (2008), 414-419. https://doi.org/10.1016/j.jmaa.2008.01.060
- Z. Ulukok and R. Turkmen, On some matrix trace inequalities. J. Inequal. Appl. 2010, Art. ID 201486, 8 pp.
- X. Yang, A matrix trace inequality, J. Math. Anal. Appl. 250 (2000), 372-374. https://doi.org/10.1006/jmaa.2000.7068
- X. M. Yang, X. Q. Yang and K. L. Teo, A matrix trace inequality, J. Math. Anal. Appl. 263 (2001), 327-331. https://doi.org/10.1006/jmaa.2001.7613
- Y. Yang, A matrix trace inequality, J. Math. Anal. Appl. 133 (1988), 573-574. https://doi.org/10.1016/0022-247X(88)90423-4
Cited by
- The right Riemann-Liouville fractional Hermite-Hadamard type inequalities derived from Green’s function vol.10, pp.4, 2016, https://doi.org/10.1063/1.5143908
- Random matrix theory of the isospectral twirling vol.10, pp.3, 2016, https://doi.org/10.21468/scipostphys.10.3.076