DOI QR코드

DOI QR Code

APPROXIMATE J*-DERIVATIONS ON J*-ALGEBRAS

  • Kim, Hark-Mahn (Department of Mathematics, Chungnam National University) ;
  • Lee, Sanghoon (Department of Mathematics, Chungnam National University)
  • Received : 2011.04.22
  • Accepted : 2011.06.01
  • Published : 2011.06.30

Abstract

We establish alternative stability and superstability of $J^{\ast}$-derivations in $J^{\ast}$-algebras for a generalized Jensen type functional equation by using the direct method and the fixed point alternative method.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
  2. D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951), 223-237. https://doi.org/10.1090/S0002-9904-1951-09511-7
  3. S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002.
  4. L. Cadariu, V. Radu, Fixed points and the stability of quadratic functional equations, An. Univ. Vest Timis. 41 (2003), 25-48.
  5. L. Cadariu, V. Radu, Fixed points and the stability of Jensen's functional equa- tion, J. Inequal. Pure Appl. Math. 4 (2003)(Article ID 4).
  6. L. Cadariu, V. Radu, On the stability of the Cauchy functional equation: A fixed point approach, Grazer Math. Ber. 346 (2004), 43-52.
  7. L. Cadariu, V. Radu, The fixed points method for the stability of some functional equations, Carpathian J. Math. 23 (2007), 63-72.
  8. M. Elin, L. Harris, S. Reich, D. Shoikhet, Evolution equations and geometric function theory in $J^{\ast}$-algebras , J. Nonlinear Convex Anal. 3 (2002), 81-121.
  9. M. E. Gordji, M.B. Ghaemi, S.K. Gharetapeh, S. Shames, A. Ebadian, On the stability of $J^{\ast}$-derivations, J. Geo. Phy. 60 (2010), 454-459. https://doi.org/10.1016/j.geomphys.2009.11.004
  10. L. A. Harris, Bounded symmetric homogeneous domains in infinite-dimensional spaces, in: Lecture Notes in Mathematics, vol. 364, Springer, Berlin (1974).
  11. L. A. Harris, Operator siegel domains , Proc. Roy. Soc. Edinburgh Sect. A. 79 (1977), 137-156. https://doi.org/10.1017/S0308210500016875
  12. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  13. D. H. Hyers, Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44(2-3) (1992), 125-153.
  14. D. H. Hyers, G. Isac, Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998.
  15. S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathe- matical Analysis, Hadronic Press, Palm Harbor, 2001.
  16. R. V. Kadison, G. Pedersen, Mean and convex combinations of unitary opera- tors, Math. Scan. 57 (1985), 249-266. https://doi.org/10.7146/math.scand.a-12116
  17. M. S. Moslehian, C. Park, On the stability of $J^{\ast}$-homomorphisms, Nonlinear Anal.-TMA 63 (2005), 42-48. https://doi.org/10.1016/j.na.2005.04.004
  18. C. Park, J.M. Rassias, Stability of the Jensen-type functional equation in $C^{\ast}$- algebras: A fixed point approach, Abstact Appl. Anal. (2009) (Article ID 360432, 17 pages).
  19. C. Park, Isomorphisms between $C^{\ast}$-ternary algebras, J. Math. Anal. Appl. 327 (2007), 101-115. https://doi.org/10.1016/j.jmaa.2006.04.010
  20. C. Park, Homomorphisms between Poisson $JC^{\ast}$algebras, Bull. Braz. Math. Soc. 36 (2005), 79-97.(MR2132832(2005m:39047)). https://doi.org/10.1007/s00574-005-0029-z
  21. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  22. Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62(1), (2000) 23-130. https://doi.org/10.1023/A:1006499223572
  23. V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003), 91-96.
  24. I. A. Rus, Principles and Applications of Fixed Point Theory, Ed. Dacia, Cluj- Napoca, 1979 (in Romanian).
  25. S. M. Ulam, Problems in Modern Mathematics, Science Ed. Wiley, New York, 1940 (Chapter VI).