Acknowledgement
Supported by : National Research Foundation of Korea
References
- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
- D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951), 223-237. https://doi.org/10.1090/S0002-9904-1951-09511-7
- S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002.
- L. Cadariu, V. Radu, Fixed points and the stability of quadratic functional equations, An. Univ. Vest Timis. 41 (2003), 25-48.
- L. Cadariu, V. Radu, Fixed points and the stability of Jensen's functional equa- tion, J. Inequal. Pure Appl. Math. 4 (2003)(Article ID 4).
- L. Cadariu, V. Radu, On the stability of the Cauchy functional equation: A fixed point approach, Grazer Math. Ber. 346 (2004), 43-52.
- L. Cadariu, V. Radu, The fixed points method for the stability of some functional equations, Carpathian J. Math. 23 (2007), 63-72.
-
M. Elin, L. Harris, S. Reich, D. Shoikhet, Evolution equations and geometric function theory in
$J^{\ast}$ -algebras , J. Nonlinear Convex Anal. 3 (2002), 81-121. -
M. E. Gordji, M.B. Ghaemi, S.K. Gharetapeh, S. Shames, A. Ebadian, On the stability of
$J^{\ast}$ -derivations, J. Geo. Phy. 60 (2010), 454-459. https://doi.org/10.1016/j.geomphys.2009.11.004 - L. A. Harris, Bounded symmetric homogeneous domains in infinite-dimensional spaces, in: Lecture Notes in Mathematics, vol. 364, Springer, Berlin (1974).
- L. A. Harris, Operator siegel domains , Proc. Roy. Soc. Edinburgh Sect. A. 79 (1977), 137-156. https://doi.org/10.1017/S0308210500016875
- D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- D. H. Hyers, Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44(2-3) (1992), 125-153.
- D. H. Hyers, G. Isac, Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998.
- S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathe- matical Analysis, Hadronic Press, Palm Harbor, 2001.
- R. V. Kadison, G. Pedersen, Mean and convex combinations of unitary opera- tors, Math. Scan. 57 (1985), 249-266. https://doi.org/10.7146/math.scand.a-12116
-
M. S. Moslehian, C. Park, On the stability of
$J^{\ast}$ -homomorphisms, Nonlinear Anal.-TMA 63 (2005), 42-48. https://doi.org/10.1016/j.na.2005.04.004 -
C. Park, J.M. Rassias, Stability of the Jensen-type functional equation in
$C^{\ast}$ - algebras: A fixed point approach, Abstact Appl. Anal. (2009) (Article ID 360432, 17 pages). -
C. Park, Isomorphisms between
$C^{\ast}$ -ternary algebras, J. Math. Anal. Appl. 327 (2007), 101-115. https://doi.org/10.1016/j.jmaa.2006.04.010 -
C. Park, Homomorphisms between Poisson
$JC^{\ast}$ algebras, Bull. Braz. Math. Soc. 36 (2005), 79-97.(MR2132832(2005m:39047)). https://doi.org/10.1007/s00574-005-0029-z - Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62(1), (2000) 23-130. https://doi.org/10.1023/A:1006499223572
- V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003), 91-96.
- I. A. Rus, Principles and Applications of Fixed Point Theory, Ed. Dacia, Cluj- Napoca, 1979 (in Romanian).
- S. M. Ulam, Problems in Modern Mathematics, Science Ed. Wiley, New York, 1940 (Chapter VI).