• Title/Summary/Keyword: ssbauer spectroscopy

Search Result 134, Processing Time 0.027 seconds

Study of Atomic Migration in $Ni_{0.5}Co_{0.5}Fe_{2}O_{4}$ Using the $M\"{o}ssbauer$ Spectroscopy ($M\"{o}ssbauer$ 분광학을 이용한 $Ni_{0.5}Co_{0.5}Fe_{2}O_{4}$의 Atomic migration 연구)

  • 이승화;홍성렬;박승일;김철성
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.1
    • /
    • pp.58-63
    • /
    • 1995
  • The crystallographic and magnetic properties of the ferrimagnetic $Ni_{0.5}Co_{0.5}Fe_{2}O_{4}$ have been studied by X-ray and $M\"{o}ssbauer$ measurements. The Crystal structure is found to be spinel structure with the lattice constant $a_{0}=8.346{\pm}0.005\;{\AA}$. $M\"{o}ssbauer$ spectra of $Ni_{0.5}Co_{0.5}Fe_{2}O_{4}$ have been taken at various temperatures rallging from 13 to 780 K. The isomer shifts indicate that the valence states of the Fe ions for tetrahedral(A) and octahedral(B) sites have ferric character. Debye temperatures for the A and B sites are found to be $441{\pm}5\;K$ and $321{\pm}5\;K$, respectively. Atomic migration from the A to the B sites starts near 500 K and increases rapidly with increasing temperature to such a degree that 51 % of the ferric ions at the A sites have moved over to the B sites by 700 K.

  • PDF

Magnetic Properties of Bismuth Substituted Terbium Iron Garnet (Tb3-xBixFe5O12(x=0.5, 0.75, 1.0, 1.25)의 자기적 특성 연구)

  • Park, Il-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.5
    • /
    • pp.245-248
    • /
    • 2006
  • [ $Tb_{3-x}Bi_xFe_5O_{12}$ ] has been studied by x-ray diffraction (XRD), vibrating sample magnetometer, $M\"{o}ssbauer$ spectroscopy. The crystal structures were found to be a cubic garnet structure with space group Ia3d. The lattice constants increase linearly with increasing bismuth concentration. With increase of bismuth substitution, the $N\'{e}el$ temperature increases but the compensation temperature decreases. We have observed the negative magnetization in Bi-TbIG system which has not been reported in garnet systems. $M\"{o}ssbauer$ spectra were measured at various temperatures from 4.2 K to $N\'{e}el$ temperature. The isomer shifts at room temperature are ${\sim}0.26mm/s$ which is consistent with ferric state.

A Study on Iron Compounds of Volcanic Rock in the Seaside Area of Ulleung Island (울릉도 해안지역 화산암의 철 화합물에 관한 연구)

  • Yoon, In-Seop;Kim, Sun-Bae;Kim, Hyung-Sang
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.3
    • /
    • pp.114-119
    • /
    • 2010
  • Fe compounds of volcanic rock samples distributed in the seaside area of Ulleung island were investigated by means of X-ray diffractometry (XRD), X-ray fluorescence spectroscopy (XRF) and M$\ddot{o}$ssbauer spectroscopy. We found that samples were typical basic rock which had the total amount of iron compounds including hematite ($\alpha-Fe_2O_3$) varies from 10.6 w% to 14.5 w% depending on the different regions by XRF. The M$\ddot{o}$ssbauer spectra of the samples were consisted of one sextet due to hemitite and doublets due to $Fe^{3+}$ in various clay mineral and $Fe^{2+}$ in pyroxene $(Ca,Fe,Mg)_2(SiO_4)_2$, ilmenite ($FeTiO_3$) and olivine $(Mg,Fe)_2SiO_4$. The balance state of Fe ions of all samples was chiefly $Fe^{3+}$, so we could find that the volcanic rocks distributed in the seaside area of Ulleung island were made in inland.

The Magnetic Properties of Iron Compounds of the Scoria in North-Eastern Area of Jeju Island (제주도 북동부 지역 스코리아 내의 철 화합물에 대한 자기적 성질)

  • Ko, Jeong-Dae;Choi, Won-Jun
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.1
    • /
    • pp.37-41
    • /
    • 2011
  • Fe compounds of scoria samples distributed in Songdang-ri positioning north-eastern area of Jeju island were investigated by means of X-ray diffractometry (XRD) and $^{57}Fe$ M$\ddot{o}$ssbauer spectroscopy. The samples were prepared from six parasite. We found that the samples were composed of a typical olivine, pyroxene, ilmenite, $SiO_2$, anorite and anorthoclase, M$\ddot{o}$ssbauer spectrum of the most scoria samples are shown doublets and sextets of olivine, doublets of pyroxene, ilmenite and silicate minerals. And the valence states of Fe ion of the scoria samples in this area are chiefly 3+ charge state and a little 2+ charge state.

Effects of Mn-dopping in Orthoferrite $LaFeO_3$ (Orthoferrite $LaFeO_3$에서의 Mn 치환 효과)

  • 채광표;이성환;이성호;이영배
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.2
    • /
    • pp.81-85
    • /
    • 2000
  • Crystallographic and magnetic properties of the Mn-doped orthoferrite LaFe$_{1-x}$Mn$_{x}$ O$_3$(0.0$\leq$x$\leq$O.4) system have been investigated by means of x-ray diffractometry, M ssbauer spectroscopy, vibrating sample magnetometer and super-conducting quantum interference device. The structure of the system was found to be orthorhombic distorted perovskite structure. At room temperature, the M ssbauer spectra for x=0.0 consists of one Zeeman sextets from Fe$^{3+}$ ions at octahedral sites. The M ssbauer spectra of two Zeeman sextets (x$\leq$0.1) change one Zeeman sextets and a paramagnetic doublet (x=0.4). The saturation magnetization increases but the coercivity decreases with increasing x in LaFe$_{1-x}$Mn$_{x}$ O$_3$.

  • PDF

The Crystallograpic Study of Polycrystalline $Fe_{1+X}Eu_{1-X}O_{3}$ (다결정 $Fe_{1+X}Eu_{1-X}O_{3}$의 결정구조 연구)

  • 김정기;서정철;한은주
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.2
    • /
    • pp.101-107
    • /
    • 1993
  • The crystallographic properties of the polycrystalline materials $Fe_{1+X}Eu_{1-X}O_{3}$(X = -0.06, 0.0, 0.1, 0.2, 0.3, 0.4) have been studied by the methods of X-ray diffraction and $M\"{o}ssbauer$ spectroscopy. The results showed that the samples with the composition range of $0.2{\leq}x{\leq}0.3$ had the garnet crystal phase, while those with $-0.06{\leq}x{\leq}0.0$ had the orthoferrite phase. However, with the tendency for the orthoferrite phase to convert into the trigonal phase via garnet phase as increasing the composition x, the orthoferrite-garnet and garnet-trigonal phase coexisted dominantly in the range of 0.0 < x < 0.2 and $0.4{\geq}x$, respectively. The analyzed results of $M\"{o}ssbauer$ spectrum indicated existence of some vacancies in the d-site of garnet phase, which can be related to the change of intensity in X-ray diffraction patterns.

  • PDF

Mössbauer Study on Crystallographic and Magnetic Properties of Mechanical Alloying Fe-M(M=Cr, Mn, Cu, Zn) Powders (기계적 합금화한 Fe계 분말 특성에 관한 뫼스바우어 분광학적 연구)

  • Park, Jae-Yoon;Choi, Jae-Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.26-29
    • /
    • 2007
  • Fe-based powders, Fe-M(M=Cr, Mn, Cu, Zn), were prepared in Ar gas by mechanical alloying and their crystallographic and magnetic properties were investigated. X-ray diffraction indicates that the cubic lattice parameter increases for the M substitution. The distance of closest approach around M can explained the increase of lattice constant in Fe-M powders. $M\"{o}ssbauer$ spectroscopy measurements on Fe-M samples indicates the coexistence of ferromagnetic phases and paramagnetic phase that are created by the distribution of local environment M on Fe atom. On the other hand, The spread of line-width on $M\"{o}ssbauer$ spectra can be explained by the distribution of hyperfine magnetic fields. The results of quadrupole shift and isomer shift revealed that M substitutions in Fe-M powders didn't change both structure and the local charge distribution around Fe atom severely.

[ $M\ddot{o}ssbauer$ ] Spectroscopy and Crystal Chemistry of Aenigmatite, $Na_4(Fe^{2+},Ti,Fe^{3+}){_{12}}(Fe^{3+},Si){_{12}}O_{40}$ (에이니그마타이트($Na_4(Fe^{2+},Ti,Fe^{3+}){_{12}}(Fe^{3+},Si){_{12}}O_{40}$)의 뫼스바우어 분광분석과 결정화학)

  • Choi, Jin-Beom
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.367-376
    • /
    • 2007
  • Aenigmatite, $Na_4(Fe^{2+},Ti,Fe^{3+}){_{12}}(Fe^{3+},Si){_{12}}O_{40}$, is a common constituent of sodium-rich alkaline igneous rocks and is classified a an open-branched single-chain silicate. $M\ddot{o}ssbauer$ spectroscopy of three natural aenigmatite specimens were done and the detailed crystal chemistry was obtained. Fitting of $M\ddot{o}ssbauer$ spectra led to the resolution of nine peaks. They consist of three doublets of $Fe^{2+}/oct$ and one merged peak at low velocity matching to two small peaks at high velocity which were assigned to $Fe^{3+}/tet\;and\;Fe^{2+}/oct$, respectively. Using the peak area for $Fe^{2+}\;and\;Fe^{3+}$ peaks, analytical data were recalculated. Precise assignment of $Fe^{2+}\;and\;Fe^{3+}$ ions in tetrahderal and octahedral sites revealed detailed crystal chemistry of aenigmatite. The existence of significant amounts of $Fe^{3+}/tet$ indicates that $Fe^{3+}$ has preference over $Al^{3+}$ for the tetrahedral sites. Crystal chemistry of aenigmatite (AEN1) yields the formula of $(Na_{3.97}Ca_{0.03})(Ca_{0.11}Mn_{0.59}Fe^{2+}{_{8.07}}Ti_{2.07}Mg_{0.70}Fe^{3+}{_{0.43}}Al_{0.04})(Fe^{3+}{_{0.56}}Al_{0.18}Si_{11.26})O_{40}$.

Mössbauer Study of Crystallographic and Magnetic Properties in Vanadium Ferrite(VxFe3-xO4) Thin Films (바나듐 페라이트 박막의 결정구조 및 자기적 성질에 관한 뫼스바우어 분광학적 연구)

  • Park, Jae-Yun;Kim, Kwang-Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.19-23
    • /
    • 2008
  • The mixed ferrite $V_xFe_{3-x}O_4$(x=0.0, 0.15, 0.5, 1.0) thin films were prepared by sol-gel method. Their crystallographic and magnetic hyperfine properties have been studied using X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and conversion electron $M\"{o}ssbauer$ spectroscopy(CEMS). The crystal structure is found to be cubic spinel throughout the series($x{\leq}1.0$), and the lattice parameter $a_0$ increases linearly with increasing V content. XRD, XSP and CEMS indicate that $V^{3+}$ substitution for $Fe^{3+}$ in B-site is superior to $V^{2+}$ substitution for $Fe^{2+}$ in B-site. It is noticeable that both quadrupole shift and hyperfine field decreases with increasing V composition, suggesting the change of local symmetry and accompanying line-broadening. The line-broadening on CEMS spectra can be explained by the distribution of magnetic hyperfine fields.