[ $M\ddot{o}ssbauer$ ] Spectroscopy and Crystal Chemistry of Aenigmatite, $Na_4(Fe^{2+},Ti,Fe^{3+}){_{12}}(Fe^{3+},Si){_{12}}O_{40}$

에이니그마타이트($Na_4(Fe^{2+},Ti,Fe^{3+}){_{12}}(Fe^{3+},Si){_{12}}O_{40}$)의 뫼스바우어 분광분석과 결정화학

  • Choi, Jin-Beom (Department of Earth and Environmental Sciences and Research Institute os Natural Sciences, Gyeongsang National University)
  • 최진범 (경상대학교 지구환경과학과 및 기초과학연구소)
  • Published : 2007.12.30

Abstract

Aenigmatite, $Na_4(Fe^{2+},Ti,Fe^{3+}){_{12}}(Fe^{3+},Si){_{12}}O_{40}$, is a common constituent of sodium-rich alkaline igneous rocks and is classified a an open-branched single-chain silicate. $M\ddot{o}ssbauer$ spectroscopy of three natural aenigmatite specimens were done and the detailed crystal chemistry was obtained. Fitting of $M\ddot{o}ssbauer$ spectra led to the resolution of nine peaks. They consist of three doublets of $Fe^{2+}/oct$ and one merged peak at low velocity matching to two small peaks at high velocity which were assigned to $Fe^{3+}/tet\;and\;Fe^{2+}/oct$, respectively. Using the peak area for $Fe^{2+}\;and\;Fe^{3+}$ peaks, analytical data were recalculated. Precise assignment of $Fe^{2+}\;and\;Fe^{3+}$ ions in tetrahderal and octahedral sites revealed detailed crystal chemistry of aenigmatite. The existence of significant amounts of $Fe^{3+}/tet$ indicates that $Fe^{3+}$ has preference over $Al^{3+}$ for the tetrahedral sites. Crystal chemistry of aenigmatite (AEN1) yields the formula of $(Na_{3.97}Ca_{0.03})(Ca_{0.11}Mn_{0.59}Fe^{2+}{_{8.07}}Ti_{2.07}Mg_{0.70}Fe^{3+}{_{0.43}}Al_{0.04})(Fe^{3+}{_{0.56}}Al_{0.18}Si_{11.26})O_{40}$.

에이니그마타이트($Na_4(Fe^{2+},Ti,Fe^{3+}){_{12}}(Fe^{3+},Si){_{12}}O_{40}$)는 Na가 풍부한 알칼리 화성암에 흔히 산출되는 광물이며, 분지 개방형 단쇄형 규산염광물로 분류된다. 3개의 산출이 다른 자연산 에이니그마타이트를 대상으로 뫼스바우어 분광분석을 실시하였으며 상세한 결정화학적 연구가 수행되었다. 뫼스바우어 분광분석 결과 9개의 흡수선이 분리되었는데, 3쌍의 흡수선은 팔면체 자리를 점유하는 $Fe^{2+}$의 피크이며, 저속도 구간의 독립적인 2개의 흡수선과 대응하는 한 개의 중첩된 흡수선은 각각 사면체와 팔면체 자리의 $Fe^{3+}$의 피크로 밝혀졌다. $Fe^{2+}$$Fe^{3+}$의 정확한 함량비에 의해 화학분석치가 재계산되었으며, Fe 양이온의 사면체 자리와 팔면체 자리에 대한 정확한 자리점유율로 상세한 결정화학적 정보를 제공하였다. 상당한 함량의 $Fe^{3+}/tet$는 사면체 자리점유에 있어 $Fe^{3+}$$Al^{3+}$보다 우위를 보여준다. 결정화학적로 규명된 에이니그마타이트(AEN1)의 상세한 화학조성은 $(Na_{3.97}Ca_{0.03})(Ca_{0.11}Mn_{0.59}Fe^{2+}{_{8.07}}Ti_{2.07}Mg_{0.70}Fe^{3+}{_{0.43}}Al_{0.04})(Fe^{3+}{_{0.56}}Al_{0.18}Si_{11.26})O_{40}$으로 밝혀졌다.

Keywords

References

  1. Bancroft, G.M. (1973) Mossbauer Spectroscopy: Introduction to Inorganic Chemists and Geochemists, McGraw-Hill
  2. Burt, D.M. (1994) Vector representation of some mineral compositions in the aenigmatite group, with special reference to ho/gtuvaite. Can. Mineral., 32, 449-457
  3. Bonaccorsi, E., Merlino, S. and Pasero, M. (1989) The crystal structure of the meteoritic mineral krinovite, $NaMg_{2}CrSi_{3}O_{10}$. Zeit. Krist., 187, 133-138 https://doi.org/10.1524/zkri.1989.187.1-2.133
  4. Cannillo, E., Mazzi, F., Fang, J.H., Robinson, P.D. and Ohya, Y. (1971) The crystal structure of aenigmatite. Am. Mineral., 56, 427-446
  5. Cosca, M.A., Rouse, R.R. and Essene, E.J. (1988) Dorrite [$Ca_{2}(Mg_{2}Fe^{3+}_{4})(Al_{4}Si_{2})O_{20}$], a new member of the aenigmatite group from a pyrometamorphic melt-rock. Am. Mineral., 73, 1440-1448
  6. Deer, W.A., Howie, R.A. and Zussman, J. (1997) Rock-Forming Minerals. Single Chain Silicate. 668p. Wiley
  7. Duggan, M.B. (1990) Wilkinsonite, $Na_{2}Fe^{2+}_{4}Fe^{3+}_{2}Si_{6}O_{20}$, a new member of the aenigmatite group from the Warrumbungle Volcano, New South Wales, Australia. Am. Mineral., 75, 694-701
  8. Fukao, Y., Obayashi, M., Inoue, H. and Nenbai, M. (1992) Subducting slabs stagnant in the mantle transition zone. J. Geophy. Research, 97, 4809- 4822 https://doi.org/10.1029/91JB02749
  9. Gasparik, T. (1989) Transformation of enstatite-diopside- jadeite pyroxenes to garnet. Cont. Min. Petrol. 102, 389-405 https://doi.org/10.1007/BF00371083
  10. Gasparik, T. (1992) Enstatite-jadeite join and its role in the Earth's mantle. Cont. Min. Petrol., 111, 283-298 https://doi.org/10.1007/BF00311192
  11. Gasparik, T. (1997) Discovery of $Na_{0.7}Mg_{1.8}Fe^{3+}_{0.3}Si_{2.2}O_{7}$: possible major mineral constituent of the upper mantle. Eos, 78, Spring Meeting Suppl., S314
  12. Gasparik, T. and Litvin, Y.A. (1997) Stability of $Na_{2}Mg_{2}Si_{2}O_{7}$ and melting relations on the forsterite- jadeite join at pressure up to 22 Gpa. Europ. J. Mineral., 9, 311-326 https://doi.org/10.1127/ejm/9/2/0311
  13. Gasparik, T., Parise, J.B., Reeder, R.J., Young, V.G. and Wilford, W.S. (1999) Composition, stability, and structure of a new member of the aenigmatite group, $Na_{2}Mg_{4+x}Fe^{3+}_{2-2x}Si_{6+x}O_{20}$, synthesized at 13-14 Gpa. Am. Mineral., 84, 257-266 https://doi.org/10.2138/am-1999-0306
  14. Grauch, R.I., Lindahl, I., Evans, H.T.J., Burt, D.M., Fitzpatrick, J.J., Foord, E.E., Graff, P.-R. and Hysingjord, J. (1994) Hogtuvaite, a new beryllian member of the aenigmatite group from Norway, with new X-ray data on aenigmatite. Can. Mineral., 32, 439-448
  15. Grew, E.S., Hålenius, U., Kritkos, M. and Shearer, C.K. (2001) New data on welshite, e.g., $Ca_{2}Mg_{3.8}Mn^{2+}_{0.6}Fe^{2+}_{0.1}Sb^{5+}_{1.5}O_{2}$[$Si_{2.8}Be_{1.7}Fe^{3+}_{0.65}Al_{0.7}As_{0.17}O_{18}$], an aenigmatite group mineral. Min. Mag., 65, 665-674 https://doi.org/10.1180/002646101317018488
  16. Grew, E.S., Barbier, J., Britten, J., Yates, M.G., Polyakov, V.O., Shcherbakova, E.P., Hålenius, U. and Shearer, C.K. (2005) Makarochkinite, $Ca_{2}Fe^{2+}_{4}Fe^{3+}TiSi_{4}BeAlO_{20}$, a new beryllosilicate member of the aenigmatite-sapphirine-surinamite group from the II'men Mountains (southern Urals), Russia. Am. Mineral., 90, 1402-1412 https://doi.org/10.2138/am.2005.1759
  17. Grew, E.S., Barbier, J., Britten, J., Hålenius, U. and Shearer, C.K. (2007) Crystal chemistry of welshite, a non-centrosymmetric (P1) aenigmatite-sapphirine- surinamite group mineral., Am. Mineral., 92, 80-90 https://doi.org/10.2138/am.2007.2250
  18. Hawthorne, F.C. (1988) Mossbauser spectroscopy. In: Hawthorne, F.C. (ed.), Spectroscopic Methods in Mineralogy and Geology. Riviews in Mineralogy, Vol. 18, Mineral. Soc. Am., 255-340
  19. Hawthorne, F.C. (2002) The use of end-member charge-arrangements in defining new mineral species and heterovalent substitutions in complex minerals. Can. Mineral., 40, 669-710
  20. Hilst, R. van der, Engdahl, R., Spakman, W. and Nolet, G. (1991) Tomographic imaging of subducted lithosphere below northwest Pacific island arcs. Nature, 353, 37-43 https://doi.org/10.1038/353037a0
  21. Jensen, B.B. (1996) Solid solution among members of the aenigmatite group. Min. Mag. 60, 982-986 https://doi.org/10.1180/minmag.1996.060.403.14
  22. Johnston, A.D. and Stout, J.H. (1985) Compositional variation of naturally occurring rhoenite. Am. Mineral., 70, 1211-1216
  23. Kelsey, C.H. and McKie, D. (1964) The unit-cell of aenigmatite. Min. Mag., 33, 986-1001 https://doi.org/10.1180/minmag.1964.033.266.06
  24. Kunzmann, T. (1999) The aenigmatite-Rhonite mineral group. European J. Mineral., 11, 743-756 https://doi.org/10.1127/ejm/11/4/0743
  25. Liebau, F. (1982) Classification of silicates. In: Ribbe, P.H. (ed.) Orthosilicates (2nd Ed.), Riviews in Mineralogy, Vol. 5, Mineral. Soc. Am., 1-24
  26. Marfunin, A.S. (1979) Spectroscopy, Luminescence and Radiation Centers in Minerals, Chap. 1, Mossbauer (Nuclear Gamma-Resonance) Spectroscopy, Springer-Verlag, 1-37
  27. Merlino, S. (1970) Crystal structure of aenigmatite. Chem. Commun. 20, 1288-1289
  28. Merlino, S. (1972) X-ray crystallography of krinovite. Zeit. Krist. 136, 81-88 https://doi.org/10.1524/zkri.1972.136.1-2.81
  29. Steffen, G., Seifert, F. and Amthauer, G. (1984) Ferric iron in sapphirine: a Mossbauer spectroscopic study. Am. Mineral., 69, 339-348
  30. Stone, A.J., Augard, H.J. and Fenger, J. (1969) General constrained non-linear regression for Mossbauer spectra. publ. Danish Atomic Energy Comm. R150-M-1348
  31. Van Derveer, D.G., Swihart, G.H., Sen Gupta, P.K. and Grew, E.S. (1993) Cation occupancies in serndibite: A crystal structure study. Am. Mineral., 78, 195-203
  32. Young, H. and Konzett, J. (2000) High-pressure synthesis of $Na_{2}Mg_{6}Si_{6}O_{18}(OH)_{2}$ - a new hydrous silicate phase isostructural with aenigmatite. Am. Mineral., 85, 259-262 https://doi.org/10.2138/am-2000-0127
  33. Zak, T. (2001) Updating of the user-interface fitting program 'CONFIT' to 'CONFIT2000'. Czech. J. Physics, Vol. 51, 735-742 https://doi.org/10.1023/A:1017614319281