• Title/Summary/Keyword: sputtering pressure

Search Result 843, Processing Time 0.029 seconds

Growth of Large Area $YBa_{2}$$Cu_{3}$ $O_{7-x}$Thin Films by Hollow Cathode Discharge Sputtering System (할로우 캐소드 방전 스퍼터링 시스템을 이용한 대면적 $YBa_{2}$$Cu_{3}$ $O_{7-x}$박막 성장)

  • 서정대;강광용;곽민환
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.26-29
    • /
    • 1999
  • Superconducting $YBa_{2}$$Cu_{3}$ $O_{7-x}$(YBCO) thin films were deposited on MgO(100) substrates using a hollow cathode discharge sputtering system. Influence of the sputtering conditions such as substrate temperature and discharge sputtering gas pressure on electrical and structural properties were investigated. It was found that YBCO thin films with zero resistance temperature higher than 85 K were obtained to the pressure 200 mToorr(Ar/O2=0.9), substrate temperature of $760^{\circ}C$, and target-substrate distance of 10 mm during film deposition. Homogeneous large area YBCO films with 2 inch diameter were also sucessfully fabricated by this method.

  • PDF

Electrical and Optical Properties of ITO Thin films Prepared on the PET Substrate (PET 기판 위에 증착된 ITO 투명전도막의 전기적ㆍ광학적 특성)

  • Song, Woo-Chang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1277-1282
    • /
    • 2004
  • ITO films on PET substrate were prepared by DC magnetron sputtering method using powdery target with different deposition conditions. In addition, the electrical and optical properties were investigated. As the sputtering power and working pressure were higher, the resistvity of ITO films increased. The optical transmittance deteriorated with increasing sputtering power and thickness. As the working pressure increased, however, the optical transmittance improved at visible region of light. From these results, we could deposited ITO films with 8${\times}$10$^{-3}$ $\Omega$-cm of resistivity and 80 % of transmittance at optimal conditions.

Electrical Properties of the Transparent Conducting Oxide Layers of Al-doped ZnO and WO3 Prepared by rf Sputtering Process

  • Gang, Dong-Su;Kim, Hui-Seong;Lee, Bung-Ju;Sin, Baek-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.316-316
    • /
    • 2014
  • Two different transparent conducting oxide (TCO) layers of Al-doped ZnO (AZO) and $WO_3$ were prepared by a rf sputtering process. Working pressure, deposition time, and target-to-substrate distance were varied for the sputtering process to improve electrical properties of the resulting layer. Thickness of the TCO layers was measured by a profile meter of ${\alpha}$-step. To evaluate the electrical conductivity, surface resistivity of the TCO layers was measured by a four-point probe technique. Decrease of the working pressure resulted in increase of deposition rate and decrease of surface resistivity of the resulting layer. Increase of the layer thickness due to increased deposition time resulted in decrease of surface resistivity of the resulting layer. The shorter the target-to-substrate distance was, the lower was the surface resistivity of the resulting layer.

  • PDF

Preparation of AlN thin films on silicon by reactive RF magnetron sputtering (RF 마그네트론 스퍼터링을 이용한 Si 기판상의 AlN 박막의 제조)

  • 조찬섭;김형표
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.2
    • /
    • pp.17-21
    • /
    • 2004
  • Aluminum nitride(AlN) thin films were deposited on silicon substrate by reactive RF magnetron sputtering without substrate heating. We investigated the dependence of some properties for AlN thin film on sputtering conditions such as working pressure, $N_2$ concentration and RF power. XRD, Ellipsometer and AES has been measured to find out structural properties and preferred orientation of AlN thin films. Deposition rate of AlN thin film was increased with an increase of RF power and decreased with an increase of $N_2$ concentration. AES in-depth measurements showed that stoichiometry of Aluminium and Nitrogen elements were not affected by $N_2$ concentration. It has shown that low working pressure, low $N_2$ concentration and high RF power should be maintained to deposit AlN thin film with a high degree of (0002) preferred orientation.

  • PDF

Electrical and Structural Properties of Ti Thin Films on Al2O3 Substrate (Al2O3 기판에 형성된 Titanium 박막의 전기적 및 구조적 특성)

  • 정운조;양현훈;임정명;김영준;박계춘
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.753-758
    • /
    • 2003
  • Ti films were deposited onto 100${\times}$100 mm alumina substrates using dc magnetron sputtering under the following conditions; substrate temperature of R.T~400 $^{\circ}C$, annealing temperature of 100~400 $^{\circ}C$, and sputtering gas pressure of 4${\times}$10$^{-3}$ Torr~4${\times}$10$^{-2}$ Torr. And the films were examined by X-ray diffraction analysis (XRD), scanning electron microscopy(SEM) and 4-point measurement system. The best electrical and structural properties was obtained by substrate temperature of ~200 $^{\circ}C$, target-substrate distance of ~14 cm and sputtering pressure of ~1${\times}$10$^{-2}$ Torr. Also at that condition the most excellent adhesion was observed.

Structural and Electrical Properties of ZrO2 Films Coated onto PET for High-Energy-Density Capacitors

  • Park, Sangshik
    • Applied Science and Convergence Technology
    • /
    • v.23 no.2
    • /
    • pp.90-96
    • /
    • 2014
  • Flexible $ZrO_2$ films as dielectric materials for high-energy-density capacitors were deposited on polyethylene terephthalate (PET) substrates by RF magnetron sputtering. The growth behavior, microstructure and electrical properties of the flexible $ZrO_2$ films were dependent on the sputtering pressure and gas ratio. Although $ZrO_2$ films were deposited at room temperature, all films showed a tetragonal crystalline structure regardless of the sputtering variables. The surface of the film became a surface with large white particles upon an increase in the $O_2/Ar$ gas ratio. The RMS roughness and crystallite size of the $ZrO_2$ films increased with an increase in the sputtering pressure. The electrical properties of the $ZrO_2$ films were affected by the microstructure and roughness. The $ZrO_2$ films exhibited a dielectric constant of 21~38 at 1 kHz and a leakage current density of $10^{-6}{\sim}10^{-5}A/cm^2$ at 300 kV/cm.

Electrical and Optical Properties of ITO Thin Films Prepared on the PET Substrate (PET 기판 위에 증착된 ITO 투명전도막의 전기적.광학적 특성)

  • Lee, Jae-Hyeong;Jung, Hak-Gi;Lim, Dong-Gu;Yang, Kea-Joon;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.176-179
    • /
    • 2003
  • ITO films on PET substrate were prepared by DC magnetron sputtering method using powdery target with different deposition conditions. In addition, the electrical and optical properties were investigated. As the sputtering power and working pressure were higher, the resistvity of ITO films increased. The optical transmittance deteriorated with increasing sputtering power and thickness. As the working pressure increased, however, the optical transmittance improved at visible region of light. From these results, we could deposited ITO films with $8{\times}10^{-3}\;{\Omega}-cm$ of resistivity and 80% of transmittance at optimal conditions.

  • PDF

The oxidation of TaFeCo thin films according to the depositio conditions (제조조건에 따른 TbFeCo 박막의 산화)

  • Mun, Jeong-Tak;Kim, Myeong-Han;Lee, Dong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.767-774
    • /
    • 1994
  • The TbFeCo thin films were prepared by the magnetron sputtering system to investigate the effect of the base pressure, film thickness and pre sputtering on the oxidation of the films by analyzing the change of matneto optical properties and by AES depth profile. The films prepared by the facing targets sputtering system represented almost constant magneto optical properties independent of the base pressure resulting from the short flight distance of the sputtered particles. Also, the thin TbFeCo films represented better perpendicular anisotropy as the films thickness increased with pre sputtering. However, it was still needed a deposition rate higher than a certain critical deposition rate to obtain a perfect perpendicular anisotropy even at a very high film thickness.

  • PDF

Characteristics of ITO Thin Films on Polymeric Substrates with Oxygen Partial Pressure Ratio (산소분압비에 따른 고분자 기판 상에 ITO박막의 특성)

  • Kim, H.H.;Lee, Mu-Yeong;Kim, K.T.;Yoon, S.H;Park, D.H.;Park, C.H.;Lim, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.849-852
    • /
    • 2004
  • Indium tin oxide (ITO) thin films on polymeric substrates such as acryl (AC), Poly carbornate (PC), polypropylene (PP), and polyethlene terephthalate (PET) have been deposited by a do reactive magnetron sputtering without heat treatments. Sputtering parameters is an important factor for high Qualify of ITO thin films prepared on polymeric substrates. Furthermore, the material, electrical and optical properties of as-deposited ITO films are dominated by the ratio of oxygen partial pressure. As the experimental results the surface roughness of ITO films becomes rough as the oxygen partial pressure Increases. The electrical resistivity of as-deposited ITO films decreases initially, and then increases with the increase of oxygen partial pressure. The optical transmittance at visible wavelength for all polymeric substrates is above 80%.

  • PDF

Properties of ITO thin films deposited by RF magnetron sputtering with process pressure (RF 마그네트론 스퍼터링법으로 제작된 ITO 박막의 공정압력 변화에 따른 특성)

  • Jeong, Seong-Jin;Kim, Deok-Kyu;Kim, Hong-Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.83-86
    • /
    • 2010
  • The transparent electrode properties of ITO films deposited by RF magnetron sputtering with process pressure were investigated. The ITO thin films was deposited on a glass substrate using a target with 3in diameter sintered at a ratio of $In_2O_3$ : $SnO_2$ (9 : 1). 200-nm-thick ITO thin films were manufactured by various process pressures ($2.0{\times}10^{-2}$, $7.0{\times}10^{-3}$ and $2.0{\times}10^{-3}$ Torr). The optical transmittance and resistivity of the deposited ITO thin films showed a relatively satisfactory result under $10^{-2}$ Torr. For high process pressure, the optical transmittance was below 80%, while for low process pressure, the optical transmittance was above 85%. As a result of of mobility, resistivity and carrier concentration by Hall measurement, we obtained satisfactory properties to apply into a transparent conducting thin film.