• Title/Summary/Keyword: sputtering gas pressure

Search Result 320, Processing Time 0.022 seconds

Deposition Characteristics of AlN Thin Films Prepared by RF Magnetron Sputtering (RF 마그네트론 스퍼터링에 의해 제조된 AlN 박막의 증착 특성)

  • Song, Jong-Han;Chun, Myoung-Pyo;Choi, Duck-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.969-973
    • /
    • 2012
  • AlN thin films were deposited on p-type Si(100) substrates by RF magnetron sputtering method. This study showed the change of the preferential orientation of AlN thin films deposition with the change of the deposition conditions such as sputtering pressure and Ar/N2 gas ratio in chamber. It was identified by X-ray diffraction patterns that AlN thin film deposited at low sputtering pressure has a (002) orientation, however its preferred orientation was changed from the (002) to the (100) orientation with increasing sputtering pressure. Also, it was observed that the properties of AlN thin films such as thickness, grain size and surface roughness were largely dependent on Ar/$N_2$ gas ratio and a high quality thin film could be prepared at lower nitrogen concentration. AlN thin films were investigated relationship between preferential orientation and deposition condition by using XRD, FE-SEM and PFM.

Electrical Properties and Microstructures in Ti Films Deposited by TFT dc Sputtering

  • Han, Chang-Suk;Jeon, Seung-Jin
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.207-211
    • /
    • 2016
  • Ti films were deposited on glass substrates under various preparation conditions in a chamber of two-facing-target type dc sputtering; after deposition, the electric resistivity values were measured using a conventional four-probe method. Crystallographic orientations and microstructures, including the texture and columnar structure, were also investigated for the Ti films. The morphological features, including the columnar structures and surface roughness, are well explained on the basis of Thornton's zone model. The electric resistivity and the thermal coefficient of the resistivity vary with the sputtering gas pressure. The minimum value of resistivity was around 0.4 Pa for both the $0.5{\mu}m$ and $3.0{\mu}m$ thick films; the apparent tendencies are almost the same for the two films, with a small difference in resistivity because of the different film thicknesses. The films deposited at high gas pressures show higher resistivities. The maximum of TCR is also around 0.4 Pa, which is the same as that obtained from the relationship between the resistivity and the gas pressure. The lattice spacing also decreases with increasing sputtering gas pressure for both the $0.5{\mu}m$ and $3.0{\mu}m$ thick films. Because they are strongly related to the sputtering gas pressures for Ti films that have a crystallographic anisotropy that is different from cubic symmetry, these changes are well explained on the basis of the film microstructures. It is shown that resistivity measurement can serve as a promising monitor for microstructures in sputtered Ti films.

Structural and Electrical Properties of ZrO2 Films Coated onto PET for High-Energy-Density Capacitors

  • Park, Sangshik
    • Applied Science and Convergence Technology
    • /
    • v.23 no.2
    • /
    • pp.90-96
    • /
    • 2014
  • Flexible $ZrO_2$ films as dielectric materials for high-energy-density capacitors were deposited on polyethylene terephthalate (PET) substrates by RF magnetron sputtering. The growth behavior, microstructure and electrical properties of the flexible $ZrO_2$ films were dependent on the sputtering pressure and gas ratio. Although $ZrO_2$ films were deposited at room temperature, all films showed a tetragonal crystalline structure regardless of the sputtering variables. The surface of the film became a surface with large white particles upon an increase in the $O_2/Ar$ gas ratio. The RMS roughness and crystallite size of the $ZrO_2$ films increased with an increase in the sputtering pressure. The electrical properties of the $ZrO_2$ films were affected by the microstructure and roughness. The $ZrO_2$ films exhibited a dielectric constant of 21~38 at 1 kHz and a leakage current density of $10^{-6}{\sim}10^{-5}A/cm^2$ at 300 kV/cm.

Design of a Large Magnetron Sputtering System for TFT LCD and Investigation of Sputtered AI Film Properties (TFT LCD 제조용 대면적 Magnetron Sputtering 장치 설계와 Al 성장막 특성 조사)

  • 유운종
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.4
    • /
    • pp.480-485
    • /
    • 1993
  • Factros considered building the magnetron sputtering system for TFT LCD (thin film transistor liquid crystal display0 metallization were thin film thichnes uniformity, temperature uniformity and the pressure gradient of sputtering gas flow in vacuum chamber, base pressure, and the stability fo the carrier moving . The system was consisted of a deposition chamber, a pre-heating chamber, a RF-precleaning chamber and a load/unload lock chamber. The system was designed to handle a substrate with dimension of 400$\times$400mm. The temperautre uniformity of a heater table developed showed $250 ^{\circ}C\pm$5% accuracyon the substrate glass. A base pressure of 1.8 $\times$10-7 torr was obtained after 24 hours pumping with a cryo pump. After an aluminum target was installed in a sputtering source and the film wa sdeposited on the glass, the uniformity, reflectivity and sheet resistance of the deposited film were measured.

  • PDF

Electrical and Optical Properties of SnO$_2$: F Thin Films by Reactive DC Magnetron Sputtering Method (반응성 DC 마그네트론 스퍼터법에 의한 SnO$_2$ : F 박막의 전기광학적 특성)

  • 정영호;김영진;신재혁;송국현;신성호;박정일;박광자
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.2
    • /
    • pp.125-133
    • /
    • 1999
  • Fluorine-doped $SnO_2$ thin films were deposited on soda-lime glass substrates by reactive DC magnetron sputtering method. Crystallinity as well as electrical and optical properties of $SnO_2$ : F thin film were investigated as the variations of deposition conditions such as substrate temperature, DC Power, $O_2$ gas pressure, $SF_6$ gas pressure. $SnO_2$ : F thin film deposited with 5% $SF_6$ gas pressure showed electrical resistivities of $2.5\times10^{-3}$cm with the average optical transparency (about 80%) These electrical and optical properties were found to be related to the crystallinity of $SnO_2$ : F thin films.

  • PDF

Effect of Oxygen Partial Pressure on the Structural, Optical and Electrical Properties of Sputter-deposited Vanadium Oxide Thin Films (스퍼터링으로 증착된 바나듐 산화막의 구조적, 광학적, 전기적 특성에 미치는 산소 분압의 효과)

  • 최복길;최창규;권광호;김성진;이규대
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.12
    • /
    • pp.1008-1015
    • /
    • 2001
  • Thin films of vanadium oxide(VO$\_$x/) have been deposited by r.f. magnetron sputtering from V$_2$O$\_$5/ target in gas mixture of argon and oxygen. The oxygen/(oxygen+argon) partial pressure ratio is changed from 0% to 8%. Crystal structure, chemical composition, bonding, optical and electrical properties of films sputter-deposited under different oxygen gas pressures are characterized through XPS, AES, RBS, FTIR, optical absorption and electrical conductivity measurements. V$_2$O$\_$5/ and lower oxides co-exist in sputter-deposited films and as the oxygen partial pressure is increased the films become more stoichiometric V$_2$O$\_$5/. The increase of O/V ratio with increasing oxygen gas pressure is attributed to the partial filling of oxygen vacancies through diffusion. It is observed that the oxygen atoms located on the V-O plane of V$_2$O$\_$5/ layer participate more readily in the oxidation process. With increasing oxygen gas pressure indirect and direct optical band gaps are increased, but thermal activation energies are decreased.

  • PDF

COMPOSITION OF SUPERCONDUCTING YBCO THIN FILMS WITH RF REACTIVE SPUTTERING CONDITIONS

  • Kim, H.H.;Kim, S.;Shin, S.H.;Park, J.I.;Park, K.J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.829-833
    • /
    • 1996
  • Superconducting YBaCuO thin films were deposited on MgO (100) single crystal substrate by rf reactive sputtering method. Sputtering target was prepared by mixing the original powders of $Y_2O_3$, $BaCO_3$, and CuO at $830^{\circ}C$, and its composition was $YBa_2Cu_{3.3}O_x$ adding the excess CuO to compensate for the loss of Cu in the deposition process. The sputtering conditions for a high quality of YBCO thin film were: substrate temperature of 13$0^{\circ}C$; gas pressure of 10 mTorr; gas mixture ($O_2$: Ar =10: 90); distance of 2.5 inch; and rf power density of 4.87 W /$\textrm{cm}^2$. The deposition rate was 2.4~2.6 nm/min. From the RBS results, it was found that Cu and Ba contents in thin films decreased with the increase of substrate temperature. The increase of gas pressure resulted in significant deficiency of Ba elements.

  • PDF

Preparation of Co-Cr Thin Films by Facing Targets Sputtering (대향타겟스퍼터링에 의한 Co-Cr 박막의 제작)

  • ;;;;;S. Nakagawa;M.Naoe
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.5
    • /
    • pp.418-422
    • /
    • 1998
  • The Co-Cr films are one of the most suitable candidates for perpendicular magnetic recording media. The facing targets sputtering(FTS) system has a advantage of preparing films over a wide range of working gas pressure on plasma-free substrate. In this study, we investigated the possibility of employing FTS system for depositing Co-Cr films. The Co-Cr thin films were deposited with various sputter gas pressure($P_Ar$, 0.1~10mTorr) by using FTS apparatus at temperature of $40^{\circ}C and 220^{\circ}C$, respectively. Crystallographic and magnetic characteristics were evaluated by x-ray diffractometry (XRD) and vibrating sample magnetometer(VSM), respectively. Under argon gas pressure at 0.1mTorr, films with morphologically dense microstructure, good c-axis orientation and higher coercivity were obtained. It has been confirmed that the FTS system is very useful for preparing Co-Cr thin film recording media.

  • PDF

Effects of RF Pulsing on the Ionization Enhancement in Ionized Magnetron Sputtering (RF pulsing이 Ionized Magnetron Sputtering의 이온화율 향상에 미치는 효과)

    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.255-260
    • /
    • 1998
  • The ionized magnetron sputtering is very useful in filling of small metal contact or via in ULSI processing with very high ionization upto 80% based on incoming flux ratio. But fairly high sputtering gas pressure is required to get high ionization, which instead gives low deposition rate and diverse incoming neutral's angular distribution. The electron quenching by heavily sputtered metals and gas rarefaction were considered the main causes of decreased ionization in this process. RF pulsing of sputtering power was proposed to solve those two problems. The results showed that 10㎳/10 ㎳ and 100㎳/100 ㎳ of on/off pulsings were optimal pulse conditions from OES measurements and also XRD of deposited Ag film showed distinct change of (111) to (200) preferred orientation. These results were analysed in a view point of neutral gas heating and cooling by high power sputtering.

  • PDF

The Effect of Sputtering Conditions on the Electrochromic Properties of Titanium Oxide Thin Films (스퍼터링 조건이 티탄산화물박막의 전기적 착색 특성에 미치는 영향)

  • Lee, Kil-Dong
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.55-61
    • /
    • 2006
  • Titanium oxide ($TiO_2$) films are deposited on the indium tin oxide (ITO) substrate in an $Ar/O_2$ atmosphere by using reactive RF (Radio Frequency) magnetron sputtering technique, and Electrochromic properties and durability of $TiO_2$ films deposited at different preparation conditions are investigated by using UV-VIS spectrophotometer and cyclic voltammetry Li+ interalation/deintercalation in $TiO_2$ films shows that the electrochromic properties and durability of as-deposited films strongly depend on gas pressure $TiO_2$ films formed in our sputtering conditions are found to remain transparent, irrespective of their Li+ ion contents. The optimum sputtering conditions for film as passive counter electrode in electrochromic devices are working pressure of $1.0\;{\times}\;10^{-2}\;torr$ and oxygen flow raes of $10{\sim}15\;sccm$, respectively.