• Title/Summary/Keyword: spectral energy

Search Result 818, Processing Time 0.024 seconds

Low-energy interband transition effects on extended Drude model analysis of optical data of correlated electron system

  • Hwang, Jungseek
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.3
    • /
    • pp.6-12
    • /
    • 2019
  • Extended Drude model has been used to obtain information of correlations from measured optical spectra of strongly correlated electron systems. The optical self-energy can be defined by the extended Drude model formalism. One can extract the optical self-energy and the electron-boson spectral density function from measured reflectance spectra using a well-developed usual process, which is consistent with several steps including the extended Drude model and generalized Allen's formulas. Here we used a reverse process of the usual process to investigate the extended Drude analysis when an additional low-energy interband transition is included. We considered two typical electron-boson spectral density model functions for two different (normal and d-wave superconducting) material states. Our results show that the low-energy interband transition might give significant effects on the electron-boson spectral density function obtained using the usual process. However, we expect that the low-energy interband transition can be removed from measured spectra in a proper way if the transition is well-defined or well-known.

A Study on the Photon Energy Spectrums of Backlight for the Analysis of the Photoelectric Characteristics of a-Si:H TFT (비정질 실리콘 박막 트랜지스터의 광특성 분석을 위한 백라이트의 광자 에너지 스펙트럼에 대한 연구)

  • Jeong, Kyung-Seo;Kwon, Sang-Jik;Cho, Eou-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1058-1062
    • /
    • 2009
  • For the investigation of the mechanism of photoelectric characteristics of a hydrogenated amorphous silicon thin film transistor(a-Si:H TFT), spectral characteristics of various backlights were analyzed in terms of the photon energy at each wavelength. Photon energy spectral characteristics were obtained through the multiplication of each photon energy and spectral intensities of backlights at each wavelength and the total photon energies were obtained by the integration of the photon energy spectrums. From the comparison of the experimental photo leakage current and the calculated photon energy, it was possible to conclude that the absorption of illuminated backlight to a-Si:H layer and the generation of electrons and holes are mainly carried out at the wavelength less than 500 nm as described in previous reports.

Energy consumption by Spectral Power Distribution Of LED lighting (LED 조명의 분광 분포에 따른 건물에너지 소비)

  • Jung, Ho-Youn;Kim, Hyo-In;Kim, Gon;Yun, Geun-Young
    • KIEAE Journal
    • /
    • v.12 no.3
    • /
    • pp.101-106
    • /
    • 2012
  • Lighting energy accounts for approximately 20% of the electrical energy used worldwide. Thus, High efficiency Light emitting diode(LED)lighting is getting more popular as the next generation lighting replaced to traditional lighting fixtures. Also, LED lighting not only has a long lifetime but also can realize a variety visual environments through the wavelengh control. The lighting energy varies depending on the Spectral Power Distribution(SPD) even though the Illuminance level is same. Therefore, This study indicates that the difference of indoor energy consumption under the same illuminance level when Spectral Power Distribution(SPD) is different. As a result, Lighting energy consumption under red-color emphasizing SPD is about 10% lower than under blue-color emphasizing SPDs.

A NONLINEAR CONVEX SPLITTING FOURIER SPECTRAL SCHEME FOR THE CAHN-HILLIARD EQUATION WITH A LOGARITHMIC FREE ENERGY

  • Kim, Junseok;Lee, Hyun Geun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.265-276
    • /
    • 2019
  • For a simple implementation, a linear convex splitting scheme was coupled with the Fourier spectral method for the Cahn-Hilliard equation with a logarithmic free energy. However, an inappropriate value of the splitting parameter of the linear scheme may lead to incorrect morphologies in the phase separation process. In order to overcome this problem, we present a nonlinear convex splitting Fourier spectral scheme for the Cahn-Hilliard equation with a logarithmic free energy, which is an appropriate extension of Eyre's idea of convex-concave decomposition of the energy functional. Using the nonlinear scheme, we derive a useful formula for the relation between the gradient energy coefficient and the thickness of the interfacial layer. And we present numerical simulations showing the different evolution of the solution using the linear and nonlinear schemes. The numerical results demonstrate that the nonlinear scheme is more accurate than the linear one.

Enhanced Spectral Hole Substitution for Improving Speech Quality in Low Bit-Rate Audio Coding

  • Lee, Chang-Heon;Kang, Hong-Goo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.3E
    • /
    • pp.131-139
    • /
    • 2010
  • This paper proposes a novel spectral hole substitution technique for low bit-rate audio coding. The spectral holes frequently occurring in relatively weak energy bands due to zero bit quantization result in severe quality degradation, especially for harmonic signals such as speech vowels. The enhanced aacPlus (EAAC) audio codec artificially adjusts the minimum signal-to-mask ratio (SMR) to reduce the number of spectral holes, but it still produces noisy sound. The proposed method selectively predicts the spectral shapes of hole bands using either intra-band correlation, i.e. harmonically related coefficients nearby or inter-band correlation, i.e. previous frames. For the bands that have low prediction gain, only the energy term is quantized and spectral shapes are replaced by pseudo random values in the decoding stage. To minimize perceptual distortion caused by spectral mismatching, the criterion of the just noticeable level difference (JNLD) and spectral similarity between original and predicted shapes are adopted for quantizing the energy term. Simulation results show that the proposed method implemented into the EAAC baseline coder significantly improves speech quality at low bit-rates while keeping equivalent quality for mixed and music contents.

On the Spectral Eddy Viscosity in Isotropic Turbulence

  • Park Noma;Yoo Jung Yu;Choi Haecheon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.105-106
    • /
    • 2003
  • The spectral eddy viscosity model is investigated through the large eddy simulation of the decaying and forced isotropic turbulence. It is shown that the widely accepted 'plateau and cusp' model overpredicts resolved kinetic energy due to the amplification of energy at intermediate wavenumbers. Whereas, the simple plateau model reproduces a correct energy spectrum. This result overshadows a priori tests based on the filtered DNS or experimental data. An alternative method for the validation of subgrid-scale model is discussed.

  • PDF

A Study on the Relationship between Photo Leakage Current of a-Si:H Thin Film Transistor and the Photon Energy Spectrum of various Backlight Sources (비정질 실리콘 박막 트랜지스터의 광누설 전류와 다양한 광원의 광자 에너지스펙트럼과의 관계에 관한 연구)

  • Jeong, K.S.;Kwon, S.J.;Cho, E.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04a
    • /
    • pp.70-71
    • /
    • 2009
  • Photoelectric characteristics of a hydrogenated amorphous silicon thin film transistor(a-Si:H TFT) were obtained for the illumination from various backlight sources and the results were compared and analyzed in terms of the photon energy spectral characteristics of the backlights obtained from the integration of the multiplication of the photon energy and the spectral intensity at etch wavelength. It was possible to conclude that the absorption of illuminated backlight to a-Si:H layer and the generation of electrons and holes are mainly carried out at the wavelength less than 500nm.

  • PDF

Prediction of hysteretic energy demands in steel frames using vector-valued IMs

  • Bojorquez, Eden;Astorga, Laura;Reyes-Salazar, Alfredo;Teran-Gilmore, Amador;Velazquez, Juan;Bojorquez, Juan;Rivera, Luz
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.697-711
    • /
    • 2015
  • It is well known the importance of considering hysteretic energy demands for the seismic assessment and design of structures. In such a way that it is necessary to establish new parameters of the earthquake ground motion potential able to predict energy demands in structures. In this paper, several alternative vector-valued ground motion intensity measures (IMs) are used to estimate hysteretic energy demands in steel framed buildings under long duration narrow-band ground motions. The vectors are based on the spectral acceleration at first mode of the structure Sa($T_1$) as first component. As the second component, IMs related to peak, integral and spectral shape parameters are selected. The aim of the study is to provide new parameters or vector-valued ground motion intensities with the capacity of predicting energy demands in structures. It is concluded that spectral-shape-based vector-valued IMs have the best relation with hysteretic energy demands in steel frames subjected to narrow-band earthquake ground motions.

Could There Be a Unified Spectral Model for Black Holes and Neutron Stars?

  • Bhattacharjee, Ayan;Chakrabarti, Sandip K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.64.1-64.1
    • /
    • 2021
  • Accretion flows around black holes and neutron stars emit high energy radiation with varying spectral and timing properties. Observed timing variations, both short and long-term, point to the existence of a mechanism, dictated by the flow dynamics, and not by the stellar surface or magnetic fields, that is common in both. Spectral energy distributions of multiple sources indicate that the Comptonization process, the dominant mechanism for changing states in X-ray, takes place inside the flow that has similar physical properties in both the objects. In a series of observational and numerical studies, we enquire about the following: 1. Is there a steady state configuration for accreting matter around black holes that can explain spectral and timing properties? 2. Could a similar formalism explain spectral and timing properties of accretion around neutron stars? 3. Could there be a generalized flow configuration for accreting matter around such compact objects? Furthermore, we show that a unified spectral model can be constructed based on the generalized flow configuration, common to black holes and neutron stars.

  • PDF

Effects of Photon Energy Spectrum on the Photocurrent of Hydrogenated Amorphous Silicon Thin Film Transistor by Using Frequency Filters

  • Cho, Eou Sik;Kwon, Sang Jik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.1
    • /
    • pp.16-19
    • /
    • 2013
  • Frequency filters with various filtering wavelengths were used in the photoelectric characterization of hydrogenated amorphous silicon thin film transistor (a-Si:H TFT) and the experimental results were described and analyzed in terms of the photon energy spectral characteristics calculated from the integration of the photon energy and the spectral intensity of transmitted backlight through the filters at each wavelength. From the comparison of the photocurrents and the calculated photon energy spectrums for the filtered ranges of wavelength, it was possible to conclude that the photocurrents are closely related to the photon energy spectrums of the backlight.