DOI QR코드

DOI QR Code

Low-energy interband transition effects on extended Drude model analysis of optical data of correlated electron system

  • Received : 2019.08.13
  • Accepted : 2019.09.19
  • Published : 2019.09.30

Abstract

Extended Drude model has been used to obtain information of correlations from measured optical spectra of strongly correlated electron systems. The optical self-energy can be defined by the extended Drude model formalism. One can extract the optical self-energy and the electron-boson spectral density function from measured reflectance spectra using a well-developed usual process, which is consistent with several steps including the extended Drude model and generalized Allen's formulas. Here we used a reverse process of the usual process to investigate the extended Drude analysis when an additional low-energy interband transition is included. We considered two typical electron-boson spectral density model functions for two different (normal and d-wave superconducting) material states. Our results show that the low-energy interband transition might give significant effects on the electron-boson spectral density function obtained using the usual process. However, we expect that the low-energy interband transition can be removed from measured spectra in a proper way if the transition is well-defined or well-known.

Keywords

References

  1. Hazime Mori, "A continued-fraction representation of the timecorrelation functions," Prog. Theor. Phys., vol. 34, pp. 399, 1965. https://doi.org/10.1143/PTP.34.399
  2. W. Gotze and P. Wolfle, "Homogeneous dynamical conductivity of simple metals," Phys. Rev. B, vol. 6, pp. 1226, 1972. https://doi.org/10.1103/PhysRevB.6.1226
  3. A. V. Puchkov, D. N. Basov, and T. Timusk, "The pseudogap state in high-Tc superconductors: an infrared study," J. Phys.: Cond. Matter, vol. 8, pp. 10049, 1996. https://doi.org/10.1088/0953-8984/8/48/023
  4. J. Hwang, T. Timusk, and G. D. Gu, "High-transition-temperature superconductivity in the absence of the magnetic-resonance mode," Nature (London), vol. 427, pp. 714, 2004. https://doi.org/10.1038/nature02347
  5. J. P. Carbotte, E. Schachinger, and J. Hwang, "Boson structures in the relation between optical conductivity and quasiparticle dynamics," Phys. Rev. B, vol. 71, pp. 054506, 2005. https://doi.org/10.1103/PhysRevB.71.054506
  6. J. Hwang, E. J. Nicol, T. Timusk, A. Knigavko, and J. P. Carbotte, "High energy scales in the optical self-energy of the cuprate superconductors," Phys. Rev. Lett., vol. 98, pp. 207002, 2007. https://doi.org/10.1103/PhysRevLett.98.207002
  7. B. C. Webb, A. J. Sievers, and T. Mihalisin, "Observation of an energy- and temperature-dependent carrier mass for mixed-valence CePd3," Phys. Rev. Lett., vol. 57, pp. 1951, 1986. https://doi.org/10.1103/PhysRevLett.57.1951
  8. P. E. Sulewski, A. J. Sievers, M. B. Maple, M. S. Torikachvili, J. L. Smith, and Z. Fisk, "Far-infrared absorptivity of UPt3," Phys. Rev. B, vol. 38, pp. 5338, 1988. https://doi.org/10.1103/PhysRevB.38.5338
  9. G. A. Thomas, J. Orenstein, D. H. Rapkine, M. Capizzi, A. J. Millis, R. N. Bhatt, L. F. Schneemeyer, and J. V. Waszczak, "Y $Ba_2Cu_3O_7$- ${\delta}$ electrodynamics of crystals with high reflectivity," Phys. Rev. Lett., vol. 61, pp. 1313, 1988. https://doi.org/10.1103/PhysRevLett.61.1313
  10. A. M. Awasthi, L. Degiorgi, G. Gruner, Y. Dalichaouch, and M. B. Maple, "Complete optical spectrum of $CeAl_3$," Phys. Rev. B, vol. 48, pp. 10692, 1993. https://doi.org/10.1103/PhysRevB.48.10692
  11. S. V. Dordevic, D. N. Basov, N. R. Dilley, E. D. Bauer, and M. B. Maple, "Hybridization gap in heavy fermion compounds," Phys. Rev. Lett., vol. 86, pp. 684, 2001. https://doi.org/10.1103/PhysRevLett.86.684
  12. P. Tran, S. Donovan, and G. Gruner, "Charge excitation spectrum in $UPt_3$," Phys. Rev. B, vol. 65, pp. 205102, 2002. https://doi.org/10.1103/PhysRevB.65.205102
  13. P. B. Allen, "Electron-phonon effects in the infrared properties of metals," Phys. Rev. B, vol. 3, pp. 305, 1971. https://doi.org/10.1103/PhysRevB.3.305
  14. B. Mitrovic and M. A. Fiorucci, "Effects of energy dependence in the electronic density of states on the far-infrared absorption in superconductors," Phys. Rev. B, vol. 31, pp. 2694, 1985. https://doi.org/10.1103/PhysRevB.31.2694
  15. S. V. Shulga, O. V. Dolgov, and E. G. Maksimov, "Electronic states and optical spectra of HTSC with electron-phonon coupling," Physica C, vol. 178, pp. 266, 1991. https://doi.org/10.1016/0921-4534(91)90073-8
  16. S. G. Sharapov and J. P. Carbotte, "Effects of energy dependence in the quasiparticle density of states on far-infrared absorption in the pseudogap state," Phys. Rev. B, vol. 72, pp. 134506, 2005. https://doi.org/10.1103/PhysRevB.72.134506
  17. W. L. McMillan and J. M. Rowell, "Lead phonon spectrum calculated from superconducting density of states," Phys. Rev. Lett., vol. 14, pp. 108, 1965. https://doi.org/10.1103/PhysRevLett.14.108
  18. J. Hwang, E. Schachinger, J. P. Carbotte, F. Gao, D. B. Tanner, and T. Timusk, "Bosonic spectral density of epitaxial thin-film $La_{1.83}Sr_{0.17}CuO_4$ superconductors from infrared conductivity measurements," Phys. Rev. Lett., vol. 100, pp. 137005, 2008. https://doi.org/10.1103/PhysRevLett.100.137005
  19. J. Hwang, "Electron-boson spectral density function of underdoped $Bi_2Sr_2CaCu_2O_{8+{\delta}}$ and $YBa_2Cu_3O_{6.50}$," Phys. Rev. B, vol. 83, pp. 014507, 2011. https://doi.org/10.1103/PhysRevB.83.014507
  20. R. T. Collins, Z. Schlesinger, F. Holtzberg, P. Chaudhari, and C. Field, "Reflectivity and conductivity of $YBa_2Cu_3O_7$," Phys. Rev. B, vol. 39, pp. 6571, 1989. https://doi.org/10.1103/PhysRevB.39.6571
  21. J. P. Carbotte, "Properties of boson-exchange superconductors," Rev. Mod. Phys., vol. 62, pp. 1027, 1990. https://doi.org/10.1103/RevModPhys.62.1027
  22. E. Schachinger and J. P. Carbotte, "Coupling to spin fluctuations from conductivity scattering rates," Phys. Rev. B, vol. 62, pp. 9054, 2000. https://doi.org/10.1103/PhysRevB.62.9054
  23. J. Hwang, J. Yang, T. Timusk, S. G. Sharapov, J. P. Carbotte, D. A. Bonn, R. Liang, and W. N. Hardy, "a-axis optical conductivity of detwinned ortho-II $YBa_2Cu_3O_{6.50}$," Phys. Rev. B, vol. 73, pp. 014508, 2006. https://doi.org/10.1103/PhysRevB.73.014508
  24. J. Hwang, T. Timusk, E. Schachinger, and J. P. Carbotte, "Evolution of the bosonic spectral density of the high-temperature superconductor $Bi_2Sr_2CaCu_2O_{8+{\delta}}$," Phys. Rev. B, vol. 75, pp. 144508, 2007. https://doi.org/10.1103/PhysRevB.75.144508
  25. Jungseek Hwang, "Reverse process of usual optical analysis of boson-exchange superconductors: impurity effects on s- and d-wave superconductors," J. Phys.: Condens. Matter, vol. 27, pp. 085701, 2015. https://doi.org/10.1088/0953-8984/27/8/085701
  26. L. Benfatto, E. Cappelluti, L. Ortenzi, and L. Boeri, "Extended Drude model and role of interband transitions in the midinfrared spectra of pnictides," Phys. Rev. B, vol. 83, pp. 224514, 2011. https://doi.org/10.1103/PhysRevB.83.224514
  27. Jungseek Hwang, "Analysis of optical data using extended Drude model and generalized Allen's formulas," J. Phys.: Condens. Matter, vol. 30, pp. 405604, 2018. https://doi.org/10.1088/1361-648X/aaddca
  28. E. Schachinger, D. Neuber, and J. P. Carbotte, "Inversion techniques for optical conductivity data," Phys. Rev. B, vol. 73, pp. 184507, 2006. https://doi.org/10.1103/PhysRevB.73.184507
  29. Frederick Wooten, Optical Properties of Solids. Academic, New York, 1972. (Note: Key material on page 176).
  30. J. P. Carbotte, T. Timusk, and J. Hwang, "Bosons in hightemperature superconductors: an experimental survey," Reports on Progress in Physics, vol. 74, pp. 066501, 2011. https://doi.org/10.1088/0034-4885/74/6/066501
  31. A. J. Millis, H. Monien, and D. Pines, "Phenomenological model of nuclear relaxation in the normal state of $YBa_2Cu_3O_7$," Phys. Rev. B, vol. 42, pp. 167, 1990. https://doi.org/10.1103/PhysRevB.42.167
  32. Pengcheng Dai, H. A. Mook, S. M. Hayden, G. Aeppli, T. G. Perring, R. D. Hunt, and F. Doguan, "The magnetic excitation spectrum and thermodynamics of high-Tc superconductors," Science, vol. 284, pp. 1344, 1999. https://doi.org/10.1126/science.284.5418.1344
  33. H. F. Fong, P. Bourges, Y. Sidis, L. P. Regnault, J. Bossy, A. Ivanov, D. L. Milius, I. A. Aksay, and B. Keimer, "Spin susceptibility in underdoped $YBa_2Cu_3O_{6+x}$," Phys. Rev. B, vol. 61, pp. 14773, 2000. https://doi.org/10.1103/PhysRevB.61.14773
  34. P. D. Johnson, T. Valla, A. V. Fedorov, Z. Yusof, B. O. Wells, Q. Li, A. R. Moodenbaugh, G. D. Gu, N. Koshizuka, C. Kendziora, Sha Jian, and D. G. Hinks, Phys. Rev. Lett., vol. 87, pp. 177007, 2001. https://doi.org/10.1103/PhysRevLett.87.177007
  35. T. Valla, T. E. Kidd, W.-G. Yin, G. D. Gu, P. D. Johnson, Z.-H. Pan, and A. V. Fedorov, Phys. Rev. Lett., vol. 98, pp. 167003, 2007. https://doi.org/10.1103/PhysRevLett.98.167003
  36. Wentao Zhang, Guodong Liu, Lin Zhao, Haiyun Liu, Jianqiao Meng, Xiaoli Dong, Wei Lu, J. S. Wen, Z. J. Xu, G. D. Gu, T. Sasagawa, Guiling Wang, Yong Zhu, Hongbo Zhang, Yong Zhou, Xiaoyang Wang, Zhongxian Zhao, Chuangtian Chen, Zuyan Xu, and X. J. Zhou, Phys. Rev. Lett., vol. 100, pp. 107002, 2008. https://doi.org/10.1103/PhysRevLett.100.107002
  37. J. Hwang, J. Yang, J. P. Carbotte, and T. Timusk, "Manifestation of the pseudogap in ab-plane optical characteristics," J. Phys. Condens. Matter, vol. 20, pp. 295215, 2008.
  38. S. V. Dordevic, D. van der Marel, and C. C. Homes, "Fate of quasiparticles in the superconducting state," Phys. Rev. B, vol. 90, pp. 174508, 2014. https://doi.org/10.1103/PhysRevB.90.174508
  39. Jungseek Hwang, "Intrinsic temperature-dependent evolutions in the electron-boson spectral density obtained from optical data," Scientific Reports, vol. 6, pp. 23647, 2016. https://doi.org/10.1038/srep23647
  40. E. Schachinger and J. P. Carbotte, "Optical properties of bogoliubov quasiparticles," Phys. Rev. B, vol. 95, pp. 144516, 2017. https://doi.org/10.1103/PhysRevB.95.144516
  41. Jungseek Hwang, arXiv cond-mat, page 1907.13326, 2019.
  42. J. Hwang, "Simulation of a hump structure in the optical scattering rate within a generalized Allen formalism and its application to copper oxide systems," J. Phys. Condens. Matter, vol. 25, pp. 295701, 2013. https://doi.org/10.1088/0953-8984/25/29/295701
  43. Jungseek Hwang, "Electron-boson spectral density function of correlated multiband systems obtained from optical data: $Ba_{0.6}K_{0.4}Fe_2As_2$ and LiFeAs," J. Phys.: Condens. Matter, vol. 28, pp. 125702, 2016. https://doi.org/10.1088/0953-8984/28/12/125702
  44. F. Marsiglio, T. Startseva, and J. P. Carbotte, "Inversion of K3C60 reflectance data," Phys. Lett. A, vol. 245, pp. 172, 1998. https://doi.org/10.1016/S0375-9601(98)00373-9
  45. J. P. Carbotte, E. Schachinger, and D. N. Basov, "Coupling strength of charge carriers to spin fluctuations in high-temperature superconductors," Nature (London), vol. 401, pp. 354, 1999. https://doi.org/10.1038/43843
  46. Ar. Abanov, A. V. Chubukov, and J. Schmalian, "Singularities in the optical response of cuprates," Phys. Rev. B, vol. 63, pp. 180510(R), 2001. https://doi.org/10.1103/PhysRevB.63.180510