References
- Flohr TG, McCollough CH, Bruder H, Petersilka M, Gruber K, Suss C, et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 2006;16:256-268 https://doi.org/10.1007/s00330-005-2919-2
- Flohr TG, Bruder H, Stierstorfer K, Petersilka M, Schmidt B, McCollough CH. Image reconstruction and image quality evaluation for a dual source CT scanner. Med Phys 2008;35:5882-5897 https://doi.org/10.1118/1.3020756
- Flohr TG. CT systems. Curr Radiol Rep 2013;1:52-63 https://doi.org/10.1007/s40134-012-0005-5
- Kyriakou Y, Kalender WA. Intensity distribution and impact of scatter for dual-source CT. Phys Med Biol 2007;52:6969-6989 https://doi.org/10.1088/0031-9155/52/23/014
- Petersilka M, Stierstorfer K, Bruder H, Flohr T. Strategies for scatter correction in dual source CT. Med Phys 2010;37:5971-5992 https://doi.org/10.1118/1.3504606
- Li B, Yadava G, Hsieh J. Quantification of head and body CTDIVOL of dual-energy x-ray CT with fast-kVp switching. Med Phys 2011;38:2595-2601 https://doi.org/10.1118/1.3582701
- Zhang D, Li X, Liu B. Objective characterization of GE Discovery CT750 HD scanner: gemstone spectral imaging mode. Med Phys 2011;38:1178-1188 https://doi.org/10.1118/1.3551999
- So A, Lee TY, Imai Y, Narayanan S, Hsieh J, Kramer J, et al. Quantitative myocardial perfusion imaging using rapid kVp switch dual-energy CT: preliminary experience. J Cardiovasc Comput Tomogr 2011;5:430-442 https://doi.org/10.1016/j.jcct.2011.10.008
- Hsieh J, Gurmen OE, King KF. Investigation of a solid-state detector for advanced computed tomography. IEEE Trans Med Imaging 2000;19:930-940 https://doi.org/10.1109/42.887840
- Nikl M. Scintillation detectors for x-rays. Meas Sci Technol 2006;17:R37-R54 https://doi.org/10.1088/0957-0233/17/4/R01
- Shkumat NA, Siewerdsen JH, Dhanantwari AC, Williams DB, Richard S, Paul NS, et al. Optimization of image acquisition techniques for dual-energy imaging of the chest. Med Phys 2007;34:3904-3915 https://doi.org/10.1118/1.2777278
- Chaytor RJ, Rajbabu K, Jones PA, McKnight L. Determining the composition of urinary tract calculi using stone-targeted dual-energy CT: evaluation of a low-dose scanning protocol in a clinical environment. Br J Radiol 2016;89:20160408
- Chandramohan M. Dual energy composition analysis. Case study. Canon Medical Systems Corporation, 2018. Available at: https://mfl.ssl.cdn.sdlmedia.com/636673921901874788AG.pdf. Accessed January, 2020
- Bornefalk H, Danielsson M. Photon-counting spectral computed tomography using silicon strip detectors: a feasibility study. Phys Med Biol 2010;55:1999-2022 https://doi.org/10.1088/0031-9155/55/7/014
- Roessl E, Herrmann C, Kraft E, Proksa R. A comparative study of a dual-energy-like imaging technique based on counting-integrating readout. Med Phys 2011;38:6416-6428 https://doi.org/10.1118/1.3651643
- Hua CH, Shapira N, Merchant TE, Klahr P, Yagil Y. Accuracy of electron density, effective atomic number, and iodine concentration determination with a dual-layer dual-energy computed tomography system. Med Phys 2018;45:2486-2497 https://doi.org/10.1002/mp.12903
- McCollough CH, Leng S, Yu L, Fletcher JG. Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 2015;276:637-653 https://doi.org/10.1148/radiol.2015142631
- Euler A, Parakh A, Falkowski AL, Manneck S, Dashti D, Krauss B, et al. Initial results of a single-source dual-energy computed tomography technique using a split-filter: assessment of image quality, radiation dose, and accuracy of dual-energy applications in an in vitro and in vivo study. Invest Radiol 2016;51:491-498 https://doi.org/10.1097/RLI.0000000000000257
- Almeida IP, Schyns LE, Ollers MC, van Elmpt W, Parodi K, Landry G, et al. Dual-energy CT quantitative imaging: a comparison study between twin-beam and dual-source CT scanners. Med Phys 2017;44:171-179 https://doi.org/10.1002/mp.12000
- Shikhaliev PM. Energy-resolved computed tomography: first experimental results. Phys Med Biol 2008;53:5595-5613 https://doi.org/10.1088/0031-9155/53/20/002
- Herrmann C, Engel KJ, Wiegert J. Performance simulation of an x-ray detector for spectral CT with combined Si and Cd[Zn] Te detection layers. Phys Med Biol 2010; 55:7697-7713 https://doi.org/10.1088/0031-9155/55/24/020
- Persson M, Huber B, Karlsson S, Liu X, Chen H, Xu C, et al. Energy-resolved CT imaging with a photon-counting silicon-strip detector. Phys Med Biol 2014;59:6709-6727 https://doi.org/10.1088/0022-3727/59/22/6709
- Muenzel D, Bar-Ness D, Roessl E, Blevis I, Bartels M, Fingerle AA, et al. Spectral photon-counting CT: initial experience with dual-contrast agent K-edge colonography. Radiology 2017;283:723-728 https://doi.org/10.1148/radiol.2016160890
- Yu Z, Leng S, Jorgensen SM, Li Z, Gutjahr R, Chen B, et al. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array. Phys Med Biol 2016;61:1572-1595 https://doi.org/10.1088/0031-9155/61/4/1572
- Mijnheer BJ, Guldbakke S, Lewis VE, Broerse JJ. Comparison of the fast-neutron sensitivity of a Geiger-Muller counter using different techniques. Phys Med Biol 1982;27:91-96 https://doi.org/10.1088/0031-9155/27/1/009
- Garcia-Sanchez AJ, Garcia Angosto EA, Moreno Riquelme PA, Serna Berna A, Ramos-Amores D. Ionizing radiation measurement solution in a hospital environment. Sensors (Basel) 2018;18:510
- Yamada H, Suzuki A, Uchida Y, Yoshida M, Yamamoto H, Tsukuda Y. A scintillator Gd2O2 S: Pr, Ce, F for X-ray computed tomography. J Electrochem Soc 1989;136:2713-2716 https://doi.org/10.1149/1.2097566
- Rossner W, Ostertag M, Jermann F. Properties and applications of gadolinium oxysulfide based ceramic scintillators. Electrochem Soc Proc 1999;98:187-194
- Li B. Dual-energy CT with fast-kVp switching and its applications in orthopedics. OMICS J Radiol 2013;2:137
- Taguchi K, Iwanczyk JS. Vision 20/20: single photon counting x-ray detectors in medical imaging. Med Phys 2013;40:100901
- Taguchi K, Zhang M, Frey EC, Wang X, Iwanczyk JS, Nygard E, et al. Modeling the performance of a photon counting x-ray detector for CT: energy response and pulse pileup effects. Med Phys 2011;38:1089-1102 https://doi.org/10.1118/1.3539602
- Persson M, Bujila R, Nowik P, Andersson H, Kull L, Andersson J, et al. Upper limits of the photon fluence rate on CT detectors: case study on a commercial scanner. Med Phys 2016;43:4398-4411 https://doi.org/10.1118/1.4954008
- Shikhaliev PM, Fritz SG, Chapman JW. Photon counting multienergy x-ray imaging: effect of the characteristic x rays on detector performance. Med Phys 2009;36:5107-5119 https://doi.org/10.1118/1.3245875
- Xu C, Danielsson M, Bornefalk H. Evaluation of energy loss and charge sharing in cadmium telluride detectors for photon-counting computed tomography. IEEE Trans Nucl Sci 2011;58:614-625 https://doi.org/10.1109/TNS.2011.2122267
- Szeles C, Soldner SA, Vydrin S, Graves J, Bale DS. CdZnTe semiconductor detectors for spectroscopic x-ray imaging. IEEE Trans Nucl Sci 2008;55:572-582 https://doi.org/10.1109/TNS.2007.914034
- Alvarez RE, Macovski A. Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol 1976;21:733-744 https://doi.org/10.1088/0031-9155/21/5/002
- Lehmann LA, Alvarez RE, Macovski A, Brody WR, Pelc NJ, Riederer SJ, et al. Generalized image combinations in dual KVP digital radiography. Med Phys 1981;8:659-667 https://doi.org/10.1118/1.595025
- Hubbell JH, Seltzer SM. Tables of x-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z=1 to 92 and 48 additional substances of dosimetric interest. Gaithersburg: National Institute of Standards and Technology, 1996
- Hsieh J. Advanced CT applications. In: Hsieh J, ed. Computed tomography principles, design, artifacts and recent advances, 2nd ed. Hoboken: Wiley, 2009:469-543
- Wu X, Langan DA, Xu D, Benson TM, Pack JD, Schmitz AM, et al. Monochromatic CT image representation via fast switching dual kVp. SPIE Medical Imaging;2009 March 13;Lake Buena Vista, USA
- Yu L, Leng S, McCollough CH. Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol 2012;199:S9-S15 https://doi.org/10.2214/AJR.12.9121
- Brooks RA, Di Chiro G. Beam hardening in x-ray reconstructive tomography. Phys Med Biol 1976;21:390-398 https://doi.org/10.1088/0031-9155/21/3/004
- So A, Hsieh J, Imai Y, Narayanan S, Kramer J, Procknow K, et al. Prospectively ECG-triggered rapid kV-switching dual-energy CT for quantitative imaging of myocardial perfusion. JACC Cardiovasc Imaging 2012;5:829-836 https://doi.org/10.1016/j.jcmg.2011.12.026
- Cormode DP, Roessl E, Thran A, Skajaa T, Gordon RE, Schlomka JP, et al. Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles. Radiology 2010;256:774-782 https://doi.org/10.1148/radiol.10092473
- Schlomka JP, Roessl E, Dorscheid R, Dill S, Martens G, Istel T, et al. Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography. Phys Med Biol 2008;53:4031-4047 https://doi.org/10.1088/0031-9155/53/15/002
- Johnson TR, Krauss B, Sedlmair M, Grasruck M, Bruder H, Morhard D, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol 2007;17:1510-1517 https://doi.org/10.1007/s00330-006-0517-6
- Liu X, Yu L, Primak AN, McCollough CH. Quantitative imaging of element composition and mass fraction using dual-energy CT: three-material decomposition. Med Phys 2009;36:1602-1609 https://doi.org/10.1118/1.3097632
- Mendonca PR, Lamb P, Sahani DV. A flexible method for multi-material decomposition of dual-energy CT images. IEEE Trans Med Imaging 2014;33:99-116 https://doi.org/10.1109/TMI.2013.2281719
- Hsieh J. Advanced CT applications. In: Hsieh J, ed. Computed tomography principles, design, artifacts and recent advances, 3rd ed. Bellingham: SPIE Press Book, 2015:529-623
- van Elmpt W, Landry G, Das M, Verhaegen F. Dual energy CT in radiotherapy: current applications and future outlook. Radiother Oncol 2016;119:137-144 https://doi.org/10.1016/j.radonc.2016.02.026
- Grimes DR, Warren DR, Partridge M. An approximate analytical solution of the Bethe equation for charged particles in the radiotherapeutic energy range. Sci Rep 2017;7:9781
- Torikoshi M, Tsunoo T, Sasaki M, Endo M, Noda Y, Ohno Y, et al. Electron density measurement with dual-energy x-ray CT using synchrotron radiation. Phys Med Biol 2003;48:673-685 https://doi.org/10.1088/0031-9155/48/5/308
- Goodsitt MM, Christodoulou EG, Larson SC. Accuracies of the synthesized monochromatic CT numbers and effective atomic numbers obtained with a rapid kVp switching dual energy CT scanner. Med Phys 2011;38:2222-2232 https://doi.org/10.1118/1.3567509
- Saito M. Potential of dual-energy subtraction for converting CT numbers to electron density based on a single linear relationship. Med Phys 2012;39:2021-2030 https://doi.org/10.1118/1.3694111
- Matsufuji N, Tomura H, Futami Y, Yamashita H, Higashi A, Minohara S, et al. Relationship between CT number and electron density, scatter angle and nuclear reaction for hadron-therapy treatment planning. Phys Med Biol 1998;43:3261-3275 https://doi.org/10.1088/0031-9155/43/11/007
- Mustafa AA, Jackson DF. The relation between X-ray CT numbers and charged particle stopping powers and its significance for radiotherapy treatment planning. Phys Med Biol 1983;28:169-176 https://doi.org/10.1088/0031-9155/28/2/006
- Hunemohr N, Krauss B, Tremmel C, Ackermann B, Jakel O, Greilich S. Experimental verification of ion stopping power prediction from dual energy CT data in tissue surrogates. Phys Med Biol 2014;59:83-96 https://doi.org/10.1088/0031-9155/59/1/83