• Title/Summary/Keyword: spatial buckling

Search Result 136, Processing Time 0.02 seconds

An Estimation of Buckling-Strength of Braced Rectangular Latticed Domes (브레이스로 보강된 사각형 래티스돔의 좌굴내력 평가)

  • Hwang, Young-Min;Suk, Chang-Mok;Park, Sang-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.4 s.10
    • /
    • pp.69-76
    • /
    • 2003
  • In case of rectangular latticed pattern which shearing rigidity is very small, it has a concern to drop Buckling-strength considerably by external force. So, by means of system to increase buckling-strength, there is a method of construction that lattice of dome is reinforced by braced member. In a case like this, shearing rigidity of braced member increase buckling-strength of the whole of structure and can be designed economically from the viewpoint of practice. Therefore, this paper is aimed at investigating how much does rigidity of braced member united with latticed member bearing principal stress of dome increase buckling-strength of the whole of structure. the subject of study is rectangular latticed domes that are a set of 2-way lattice dome which grid is simple and number of member gathering at junction is small. Analysis method is based on FEM dealing with the geometrically nonlinear deflection problems.

  • PDF

Analysis of Cold-Formed Steel Beams Considering Local Buckling and Lateral Buckling (국부좌굴과 횡좌굴을 고려한 냉간성형 ㄷ 형강보의 해석)

  • Jeon, Jae-Man;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.77-86
    • /
    • 2006
  • The stress analysis of cold-formed channel section steel beams under transverse load is presented. The local buckling as well as the lateral buckling effects are included in the analysis. The analytical model is developed based on the thin-walled beam theory, and a one-dimensional finite element model is formulated to solve the analytical model. Numerical results are compared with AISI code. It shows that the proposed model is appropriate for predicting of stress as well as deflection of the cold-formed channel section beam.

  • PDF

A Study on Lateral Buckling of Beam String Structures (보-스트링 구조의 횡 좌굴에 관한 연구)

  • Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.4
    • /
    • pp.49-56
    • /
    • 2013
  • Beam string structures(BSS) are one kind of efficient structure system because the bending moment in the beams is reduced greatly through the struts and the strings. As the struts in BSS are used as middle supports to the beam and always in compression, the buckling of the struts should be avoided. This paper investigates the lateral buckling of the struts in BSS. Firstly, the strut of a one-strut BSS is simplified into an analytical model by considering load is formulated and some special cases of the model are analyzed. Finally, the lateral buckling load of the strut is numerically examined by means of parameter studies. It is known that, because on end of the struts is jointed to the beam while the other end is connected to the strings, the buckling of the struts not only depends on the length of the struts and the stiffness of the joints, but also depends on the rise and the lateral stiffness of the beam, the layout of the strings and the number of the struts.

A Study on Buckling Strengths for Steel Compression Members at High Temperatures (고온 강구조 압축재의 좌굴 강도에 관한 연구)

  • Choi, Hyun-Sik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.73-81
    • /
    • 2019
  • The high-temperature properties of mild steels were studied by comparing the test results of Kwon and the yield strength, tangent modulus predicted by the design provisions of ASCE and Eurocode(EC3). The column strengths for steel members at high temperatures were determined by the elastic and inelastic buckling strengths according to elevated temperatures. The material properties at high temperatures should be used in the strength evaluations of high temperature members. The buckling strengths obtained from the AISC, EC3 and approximate formula proposed by Takagi et al. were compared with ones calculated by the material nonlinear analysis using the EC3 material model. The newly simplified formulas for yield stress, tangent modulus, proportional limit and buckling strength which were proposed through a comparative study of the material properties and buckling strengths. The buckling strengths of proposed formulas were approximately equivalent to ones obtained from the formulas of Takagi et al. within 4%. They were corresponded to the lower bound values among the buckling strengths calculated by the design formulas and inelastic buckling analysis.

Buckling Analysis of Spherical Shells With Periodic Stiffness Distribution (주기적인 강성분포를 갖는 구형쉘의 좌굴해석)

  • Jung, Hwan-Mok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.4 s.14
    • /
    • pp.77-84
    • /
    • 2004
  • Researches on spherical shell which is most usually applied have been completed by many investigators already and generalized numerical formula was derived. But the existent researches are limited to those on spherical shell with isotropic or orthotropic roof stiffness, periodic distribution of roof stiffness that can be caused by spherical and latticed roof system is not considered. Therefore, the object of this study is to develop a structural analysis program to analyze spherical shells that have periodicity of roof stiffness distribution caused by latticed roof of large space structure, grasp buckling characteristics and behavior of structure.

  • PDF

A Comparitive Study on the Shear Buckling Characteristics of Trapezoidal and Sinusoidal Corrugated Steel Plate Considering Initial Imperfection (제형 및 사인형 주름 강판의 초기 불완전 형상을 고려한 전단 좌굴 특성 비교)

  • Seo, Geonho;Shon, Sudeok;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.57-64
    • /
    • 2021
  • This paper conducted a comparative analysis of the shear buckling characteristics of trapezoidal and sinusoidal corrugated steel plates considering of their initial imperfection. Initial imperfection refers to the state where the shape of the corrugated plate is initially not perfect. As such, an initially imperfect shape was assumed using the eigen buckling mode. To calculate the buckling stress of corrugated steel plates, the linear buckling analysis used a boundary condition which was applied to the plate buckling analysis. For the comparison of trapezoidal and sinusoidal corrugation, the shape parameters were assumed using the case where the length and slope of each corrugation were the same, and the initial imperfection was considered to be from 0.1% to 5% based on the length of the steel plate. Here, for the buckling analysis, ANSYS, a commercial FEA program, was used. From the results of buckling analysis, the effect of overall initial imperfection showed that the larger the initial imperfection, the lower the buckling stress. However, in the very thin model, interaction or local buckling was dominant in the perfect shape, and in this case, the buckling stress did not decrease. Besides, the sinusoidal model showed higher buckling stress than the trapezoidal one, and the two corrugation shapes decreased in a similar way.

The Elasto-Plastic Buckling Analysis of Ball-Jointed Single Layer Latticed Domes considering the Characteristics of a Connector (적합부 특성을 고려한 볼 접합 단층 래터스 돔의 탄소성 좌굴해석)

  • Han, Sang-Eul;Kwon, Hyun-Jae;Kim, Jong-Bum
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.2 s.8
    • /
    • pp.91-99
    • /
    • 2003
  • The purpose of this study is to analyze the characteristics of the connector having an influence on the elasto-plastic buckling load of ball-jointed single layer latticed domes. As an analytic model, domes are composed of tubular member elements, balls and connectors. The joint system of members in single layer latticed domes has influence on the buckling load. Therefore, in this paper, the variation of the elasto-plastic buckling load by effects of the connectors characteristics is analyzed. The structural behavior of the connector is investigated by following points: (1) the length of rigid zone, (2) looseness of screw and (3) the diameter of connector. In addition, the elasto-plastic buckling analysis is carried out through the variation of the connectors section of yielding part, and then the buckling mode of the dome is examined. As a result, it is emphasized that the characteristics of the connector have significant effects on the buckling load of latticed domes.

  • PDF

Buckling Analysis of the Large Span Spatial Structures by Modal Analysis (Modal Analysis법에 의한 무주대공간 구조물의 좌굴해석)

  • 한상을;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.195-201
    • /
    • 1996
  • This paper is mainly forcused on the application of modal analysis In analyze the geometrically non-linear buckling behaviors of large span spatial structures, and the evaluation of each eigen mode affected post-buckling behaviors and buckling loads. Modal analysis is applied . to derivation of the system matrices transforming actual displacement space into generalized coordinates space represented by coefficients multiplied in the linear combination of eigen modes which are independent and orthogonal each other. By using modal analysis method, it will be expected to save the calculating time by computer extremely. For example, we can obtain the satisfactorily good results by using about 7% of total eigen modes only in case of single layer latticed dome. And we can decrease the possibility of divergence on the bifurcation point in the calculation of post-buckling path. Arc-length method and Newton-Raphson iteration method are used to calculate the nonlinear equilibrium path.

  • PDF

Local Buckling Analysis of Steel Beams at Elevated Temperature (온도상승에 따른 Steel-beam의 국부좌굴해석)

  • Jang, Myung-Woong;Kang, Moon-Myung;Kang, Sung-Duk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.1 s.7
    • /
    • pp.69-75
    • /
    • 2003
  • This paper is represented a general equations to obtain the elastic local buckling stresses for the flange and web of H-beam under compression at elevated temperatures and is also developed the software to perform the elastic local buckling analysis at elevated temperatures. Eurocode3 Part 1.2 are used to analyse the decrease in steel yield strength and elastic modulus at elevated temperatures. For design examples of 6 H-beams, the elastic local buckling stresses and critical temperatures for the slenderness ratio $(b/t_f\;and\;d/t_w)$ of the flange and web under uniform compression at elevated temperatures have been analysed by a computer program of this paper. It can be seen that the computer analytical results of this study show a good agreement with the experimental results by Wadee.

  • PDF

Free Vibrations and Buckling of Rectangular Plates with Linearly Varying In-Plane Loading

  • Chang, Kyong-Ho;Shim, Hyun-Ju;Kang, Jae-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.4 s.14
    • /
    • pp.99-111
    • /
    • 2004
  • An exact solution procedure is formulated for the free vibration and buckling analysis of rectangular plates having two opposite edges simply supported when these edges are subjected to linearly varying normal stresses. The other two edges may be clamped, simply supported or free, or they may be elastically supported. The transverse displacement (w) is assumed as sinusoidal in the direction of loading (x), and a power series is assumed in the lateral (y) direction (i.e., the method of Frobenius). Applying the boundary conditions yields the eigenvalue problem of finding the roots of a fourth order characteristic determinant. Care must be exercised to obtain adequate convergence for accurate vibration frequencies and buckling loads, as is demonstrated by two convergence tables. Some interesting and useful results for vibration frequencies and buckling loads, and their mode shapes, are presented for a variety of edge conditions and in-plane loadings, especially pure in-plane moments.

  • PDF