• Title/Summary/Keyword: sparse prior

Search Result 39, Processing Time 0.02 seconds

SPARSE ICA: EFFICIENT CODING OF NATURAL SCENES/ (Sparse ICA: 자연영상의 효율적인 코딩\ulcorner)

  • 최승진;이오영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.470-472
    • /
    • 1999
  • Sparse coding은 최소한의 active한 (non-orthogonal) basis vector를 이용하여 데이터를 표시하는 하나의 방법이다. Sparse coding에서 basis coefficient들이 statistically independent 하다는 constraint를 주기에 sparse coding은 independent component analysis(ICA)와 밀접한 관계를 가지고 있다. 본 논문에서는 sparse representation을 위하여 super-Gaussian prior를 이용한 ICA, 즉 sparse ICA 방법을 제시한다. Sparse ICA 방법을 이용하여 natural scenes의 basis vector를 찾고 이와 sparse coding과의 관계를 고찰한다. 여러 가지 super-Gaussian prior들을 고려하지 않고 이들이 ICA에 미치는 영향에 대해 살펴본다.

  • PDF

Majorization-Minimization-Based Sparse Signal Recovery Method Using Prior Support and Amplitude Information for the Estimation of Time-varying Sparse Channels

  • Wang, Chen;Fang, Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4835-4855
    • /
    • 2018
  • In this paper, we study the sparse signal recovery that uses information of both support and amplitude of the sparse signal. A convergent iterative algorithm for sparse signal recovery is developed using Majorization-Minimization-based Non-convex Optimization (MM-NcO). Furthermore, it is shown that, typically, the sparse signals that are recovered using the proposed iterative algorithm are not globally optimal and the performance of the iterative algorithm depends on the initial point. Therefore, a modified MM-NcO-based iterative algorithm is developed that uses prior information of both support and amplitude of the sparse signal to enhance recovery performance. Finally, the modified MM-NcO-based iterative algorithm is used to estimate the time-varying sparse wireless channels with temporal correlation. The numerical results show that the new algorithm performs better than related algorithms.

A Single-Channel Speech Dereverberation Method Using Sparse Prior Imposition in Reverberation Filter Estimation (반향 필터 추정에서 성김 특성을 이용한 단일채널 음성반향제거 방법)

  • Zee, Min-Seon;Park, Hyung-Min
    • Phonetics and Speech Sciences
    • /
    • v.5 no.4
    • /
    • pp.227-232
    • /
    • 2013
  • Since a reverberation filter is generally much shorter than the corresponding dereverberation filter, a single-channel speech dereverberation method based on reverberation filter estimation has been developed to improve its performance. Unfortunately, a typical reverberation filter still requires too many coefficients to be accurately estimated using limited speech observations. In order to exploit sparseness of reverberation filter coefficients, in this paper, we present an algorithm to impose a sparse prior to the process of reverberation filter estimation. Simulation results demonstrate that the sparse prior imposition further improves performance of the speech dereverberation method based on reverberation filter estimation.

Block Sparse Signals Recovery Algorithm for Distributed Compressed Sensing Reconstruction

  • Chen, Xingyi;Zhang, Yujie;Qi, Rui
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.410-421
    • /
    • 2019
  • Distributed compressed sensing (DCS) states that we can recover the sparse signals from very few linear measurements. Various studies about DCS have been carried out recently. In many practical applications, there is no prior information except for standard sparsity on signals. The typical example is the sparse signals have block-sparse structures whose non-zero coefficients occurring in clusters, while the cluster pattern is usually unavailable as the prior information. To discuss this issue, a new algorithm, called backtracking-based adaptive orthogonal matching pursuit for block distributed compressed sensing (DCSBBAOMP), is proposed. In contrast to existing block methods which consider the single-channel signal reconstruction, the DCSBBAOMP resorts to the multi-channel signals reconstruction. Moreover, this algorithm is an iterative approach, which consists of forward selection and backward removal stages in each iteration. An advantage of this method is that perfect reconstruction performance can be achieved without prior information on the block-sparsity structure. Numerical experiments are provided to illustrate the desirable performance of the proposed method.

Object Tracking based on Relaxed Inverse Sparse Representation

  • Zhang, Junxing;Bo, Chunjuan;Tang, Jianbo;Song, Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3655-3671
    • /
    • 2015
  • In this paper, we develop a novel object tracking method based on sparse representation. First, we propose a relaxed sparse representation model, based on which the tracking problem is casted as an inverse sparse representation process. In this process, the target template is able to be sparsely approximated by all candidate samples. Second, we present an objective function that combines the sparse representation process of different fragments, the relaxed representation scheme and a weight reference prior. Based on some propositions, the proposed objective function can be solved by using an iteration algorithm. In addition, we design a tracking framework based on the proposed representation model and a simple online update manner. Finally, numerous experiments are conducted on some challenging sequences to compare our tracking method with some state-of-the-art ones. Both qualitative and quantitative results demonstrate that the proposed tracking method performs better than other competing algorithms.

Speaker Localization in Reverberant Environments Using Sparse Priors on Acoustic Channels (음향 채널의 '성김' 특성을 이용한 반향환경에서의 화자 위치 탐지)

  • Cho, Ji-Won;Park, Hyung-Min
    • MALSORI
    • /
    • no.67
    • /
    • pp.135-147
    • /
    • 2008
  • In this paper, we propose a method for source localization in reverberant environments based on an adaptive eigenvalue decomposition (AED) algorithm which directly estimates channel impulse responses from a speaker to microphones. Unfortunately, the AED algorithm may suffer from whitening effects on channels estimated from temporally correlated natural sounds. The proposed method which applies sparse priors to the estimated channels can avoid the temporal whitening and improve the performance of source localization in reverberant environments. Experimental results show the effectiveness of the proposed method.

  • PDF

Constrained Sparse Concept Coding algorithm with application to image representation

  • Shu, Zhenqiu;Zhao, Chunxia;Huang, Pu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3211-3230
    • /
    • 2014
  • Recently, sparse coding has achieved remarkable success in image representation tasks. In practice, the performance of clustering can be significantly improved if limited label information is incorporated into sparse coding. To this end, in this paper, a novel semi-supervised algorithm, called constrained sparse concept coding (CSCC), is proposed for image representation. CSCC considers limited label information into graph embedding as additional hard constraints, and hence obtains embedding results that are consistent with label information and manifold structure information of the original data. Therefore, CSCC can provide a sparse representation which explicitly utilizes the prior knowledge of the data to improve the discriminative power in clustering. Besides, a kernelized version of our proposed CSCC, namely kernel constrained sparse concept coding (KCSCC), is developed to deal with nonlinear data, which leads to more effective clustering performance. The experimental evaluations on the MNIST, PIE and Yale image sets show the effectiveness of our proposed algorithms.

Sparse Kernel Independent Component Analysis for Blind Source Separation

  • Khan, Asif;Kim, In-Taek
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.121-125
    • /
    • 2008
  • We address the problem of Blind Source Separation(BSS) of superimposed signals in situations where one signal has constant or slowly varying intensities at some consecutive locations and at the corresponding locations the other signal has highly varying intensities. Independent Component Analysis(ICA) is a major technique for Blind Source Separation and the existing ICA algorithms fail to estimate the original intensities in the stated situation. We combine the advantages of existing sparse methods and Kernel ICA in our technique, by proposing wavelet packet based sparse decomposition of signals prior to the application of Kernel ICA. Simulations and experimental results illustrate the effectiveness and accuracy of the proposed approach. The approach is general in the way that it can be tailored and applied to a wide range of BSS problems concerning one-dimensional signals and images(two-dimensional signals).

Group-Sparse Channel Estimation using Bayesian Matching Pursuit for OFDM Systems

  • Liu, Yi;Mei, Wenbo;Du, Huiqian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.583-599
    • /
    • 2015
  • We apply the Bayesian matching pursuit (BMP) algorithm to the estimation of time-frequency selective channels in orthogonal frequency division multiplexing (OFDM) systems. By exploiting prior statistics and sparse characteristics of propagation channels, the Bayesian method provides a more accurate and efficient detection of the channel status information (CSI) than do conventional sparse channel estimation methods that are based on compressive sensing (CS) technologies. Using a reasonable approximation of the system model and a skillfully designed pilot arrangement, the proposed estimation scheme is able to address the Doppler-induced inter-carrier interference (ICI) with a relatively low complexity. Moreover, to further reduce the computational cost of the channel estimation, we make some modifications to the BMP algorithm. The modified algorithm can make good use of the group-sparse structure of doubly selective channels and thus reconstruct the CSI more efficiently than does the original BMP algorithm, which treats the sparse signals in the conventional manner and ignores the specific structure of their sparsity patterns. Numerical results demonstrate that the proposed Bayesian estimation has a good performance over rapidly time-varying channels.

Sparse Kernel Regression using IRWLS Procedure

  • Park, Hye-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.735-744
    • /
    • 2007
  • Support vector machine(SVM) is capable of providing a more complete description of the linear and nonlinear relationships among random variables. In this paper we propose a sparse kernel regression(SKR) to overcome a weak point of SVM, which is, the steep growth of the number of support vectors with increasing the number of training data. The iterative reweighted least squares(IRWLS) procedure is used to solve the optimal problem of SKR with a Laplacian prior. Furthermore, the generalized cross validation(GCV) function is introduced to select the hyper-parameters which affect the performance of SKR. Experimental results are then presented which illustrate the performance of the proposed procedure.

  • PDF