
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, Oct. 2018                                    4835 
Copyright ⓒ 2018 KSII 

 Majorization-Minimization-Based Sparse 
Signal Recovery Method Using Prior 

Support and Amplitude Information for the 
Estimation of Time-varying Sparse 

Channels 
 

Chen Wang1, Yong Fang1*  
1 Key laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory 
of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for  Advanced Communication and 

Data Science, Shanghai University，Shanghai, 200444, China 
[e-mail: cwangsh@shu.edu.cn; yfang@staff.shu.edu.cn] 

*Corresponding author: Yong Fang 
 

Received February 8, 2018; revised April 24, 2018; accepted May 18, 2018;  
published October 31, 2018 

 

 
 Abstract 

 
In this paper, we study the sparse signal recovery that uses information of both support and 
amplitude of the sparse signal. A convergent iterative algorithm for sparse signal recovery is 
developed using Majorization-Minimization-based Non-convex Optimization (MM-NcO). 
Furthermore, it is shown that, typically, the sparse signals that are recovered using the 
proposed iterative algorithm are not globally optimal and the performance of the iterative 
algorithm depends on the initial point. Therefore, a modified MM-NcO-based iterative 
algorithm is developed that uses prior information of both support and amplitude of the sparse 
signal to enhance recovery performance. Finally, the modified MM-NcO-based iterative 
algorithm is used to estimate the time-varying sparse wireless channels with temporal 
correlation. The numerical results show that the new algorithm performs better than related 
algorithms. 
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1. Introduction 

The purpose of sparse signal recovery is to reliably recover the signals that are sparse (or 
approximately sparse) from a number of compressed measurements. Because a wide range of 
natural and man-made signals, e.g., real time video [1], dynamic Magnetic Resonance Imaging 
(MRI) signals [2] and broadband wireless channel [3] are sparse (or approximately sparse), 
there are many possible applications. 

Many algorithms have been proposed to solve the sparse signal recovery problem. Among 
these algorithms, the convex optimization-based methods, such as 1L  minimization [4] and 
least absolute shrinkage and selection operator (LASSO), which use the alternating direction 
method of multipliers (ADMM) [5], are able to recover sparse signals. However, a non-convex 
penalty function, which promotes sparsity more strongly than the 1L  norm, yields more 
accurate results in many sparse signal recovery problems [6-7]. Hence, many algorithms were 
developed to solve the Non-convex Optimization (NcO) problem associated with sparse signal 
recovery. Some representative NcO algorithms for sparse signal recovery include reweighted-

1L  minimization [6], sparse Bayesian learning (SBL) [7], focal underdetermined system 
solver (FOCUSS) [8], and iteratively reweighted least squares (IRLS) [9-10]. These NcO 
algorithms were found to be effective at solving problems related to direction-of-arrival (DOA) 
estimation, neuromagnetic imaging, fetal ECG telemonitoring [11], and computer vision [13].  

It seems that there is no connection between the aforementioned NcO algorithms. However, 
they can be considered special instances of the Majorization-Minimization (MM) algorithm. 
The main difference between these various NcO is that they use different non-convex sparse 
penalty functions and different majorization functions to formulate upper bounds. The main 
advantage of the MM algorithm is that it converts the original hard NcO problem into a 
simpler problem, which solves a sequence of convex optimization problems iteratively 
[12-13]. Due to the convexity of the sub-problems, for any arbitrary initial point, the iterative 
algorithm based on NcO using MM algorithm (MM-NcO) can ensure a convergence to the 
local optimal solution [11-12] but not a convergence to the global optimal solution, which 
degenerates performance of the MM-NcO-based iterative algorithm. 

To overcome this drawback, we first quantify the error bound of the recovered sparse signal. 
We show that this error bound greatly depends on the initial point of the iterative algorithm. To 
the best of our knowledge, this work is the first study that considers the error bound. In 
addition, we propose a modified MM-NcO-based iterative algorithm for sparse signal 
recovery. The proposed algorithm exploits the prior information of support and amplitude of 
the sparse signal to formulate an improved initialization to increase the performance of the 
MM-NcO-based iterative algorithm for sparse signal recovery.  

In practice, prior information of support and amplitude of the sparse signal can be obtained 
using estimation from the previous time-slot. A sequence of sparse signals, in particular, is 
usually correlated over time. For instance, consecutive real-time video signals [1], dynamic 
MRI signals [2], and sparse time-varying wireless channels [20] usually have strong 
dependencies. In this paper, we exploit the dynamic model for time-varying wireless channels 
to enable  improved initialization and enhance the estimation of time-varying sparse wireless 
channels with temporal correlation.  
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The contributions of our paper are as follows. First, we quantify the error bound of the 
recovered sparse signal and propose a modified MM-NcO-based iterative algorithm that uses 
prior information of support and amplitude of the sparse signal to enhance recovery 
performance. Second, we propose a Particle Filtering (PF) aided Modified MM-NcO 
(PF-Modified MM-NcO) algorithm to estimate the time-varying sparse wireless channels with 
temporal correlation in an online fashion. Finally, we use the simulation results to evaluate the 
performance of the new algorithm using different system parameters.  

The paper is organized as follows. In Section 2, we analyze the recovery performance of the 
MM-NcO. In Section 3, we propose a modified MM-NcO algorithm with improved 
initialization. In Section 4, we propose a PF-Modified MM-NcO algorithm to estimate 
time-varying sparse channels with temporal correlation. The simulation results are presented 
in Section 5 and show that the proposed algorithm outperforms the related algorithms. The 
conclusion is given in Section 6. 

Important notations used in this paper include, 
0

x , x  and x  to denote the 0L , 1L  and 

2L  norms of a vector x , respectively. Bold symbols are reserved for vectors and matrices; the 
ith coordinate of a vector x  is denoted as ix . The support of x  is the set of indices of non-zero 
elements of x , denoted by supp( )x , { }supp( ) : : 0ii x= ≠x ; †A  denotes the Moore-Penrose 

pseudo-inverse of a matrix A ; 𝒩𝒩 2( , )µ σ  is the Gaussian distribution with the mean µ  and 
variance 2σ ; Lastly, I  denotes the identity matrix. 

2. Analysis of MM-NcO  
In this section, we show that the performance of the MM-based iterative algorithm for 

sparse signal recovery depends critically on the initial point. 

2.1 Sparse Signal Recovery with Non-convex Sparse Penalty 
Assuming the compressed measurements 𝐲𝐲 ∈ ℝ𝑀𝑀×1 of an unknown sparse signal matrix x

∈ ℝ𝑀𝑀×1 are given by: 

 = +y Φx N   (1) 

where x∈ ℝ𝑀𝑀×1 is the unknown s − sparse signal (
0

s=x , and s ≪ N ), Φ ∈ ℝ𝑀𝑀×𝑁𝑁 is the 
measure matrix with the dimension of M ≪ N  ( M  is far less than N ), and N ∈ ℝ𝑀𝑀×1 is the 
measurement noise. The goal of sparse signal recovery is to recover the sparse signal x  based 
on y  and Φ . Such a problem can be formulated as: 

 0
2

min

. .

s

s t ε

≤

− ≤

x

Φx y
  (2) 

where 
0

x  denotes the number of nonzero components of x , and ε  is the error tolerance 
parameter related to noise statistics. 
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The optimization defined by (2) represents an NP-hard problem. The alternative 
sparsity-promoting functions, such as 1L  norm, can be used to replace 0L  norm to find a 
sparse solution of x  more efficiently. However, a non-convex penalty function, which 
promotes sparsity more strongly than 1L  norm, yields more accurate results in many sparse 
signal recovery problems. Replacing the 0L  norm in (2) with the non-convex penalty sparse 
function we get: 

 1
2

min ( ) ( )

. .

N

i
i

P p x

s t ε
=

=

− ≤

∑x
x

Φx y
  (3) 

where ( )p x  is a non-convex penalty-function to promote sparsity, and ix  denotes the ith 
coordinate of the vector x . In this paper, we consider the use of Type II sparse penalty 
function, which is originally proposed in SBL [31]. The Type II sparse penalty function, which 
is defined by (4), is a non-decreasing and strictly concave function of x . It was shown to be a 
better sparsity-promoting function than the  norm [31]: 

 2 2 2

2 2
( ) (log( 4 ) )

4

x
p x x x

x x
l l

l
= + + +

+ +
  (4) 

where 0λ >  is a positive parameter related to the noise level [34]. 
Then, the optimization (3) can be further formulated as an unconstrained non-convex 

optimization problem defined by: 

 min ( ) ( ) ( )F D P
∈

= +
x X

x x x   (5) 

where 
2( )D = −x Φx y  is a data-fitting term.  

 

2.2 NcO-MM Algorithm 
To solve the non-convex problem defined by (5), we use the bounded optimization 

approach, also known as the majorization-minimization (MM) algorithm. The principle of 
MM is that it iteratively generates a sequence of a simpler surrogate function, which majorizes 
the given objective function and computes the next iteration as a minimum of that majorization 
function. More specifically, starting from an arbitrary initial point 0x , the algorithm produces 
a sequence  according to the following update rule: 

 1 arg min ( ) ( )
kk

x X
D P+

∈
= + xx x x   (6) 

1L

{ }kx
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where kx  is the point generated by the algorithm at iteration k , and ( )
k

Px x  is the 

majorization function of ( )P x  at kx . In the context of MM, the function ( )
k

Px x  is a convex 
upper-bound approximation of ( )P x  that coincides with ( )P x  at k=x x , i.e.: 

 ( ) ( )
k

P P≥x x x   (7) 

 ( ) ( )
k k kP P=x x x   (8) 

Since ( )D x  and ( )
k

Px x  are both convex, (6) can be solved using the Fermat rule (Thm. 10.1 
in [15]). Using the general MM framework, we can formulate: 

 1 1 1( ) ( ) ( ) ( ) ( ) ( )k kk k k k k kF F D P D P F+ + +≤ ≤ + ≤ + =x xx x x x x x   (9) 

Here we assume that F  is bounded from below, i.e., inf ( ) :F F∈ = > −∞x X x .  
The MM-based Non-convex Optimization algorithm (MM-NcO) for recovering of sparse 

signal is given below. 
 

Algorithm 1 MM-NcO 
Input: Arbitrary initial point , and measure matrix 𝚽𝚽 ∈ ℝ𝑀𝑀×𝑁𝑁 
Output: Estimated   
Repeat: 1. 1 arg min ( ) ( )

kk

x X
D P+

∈
= + xx x x   

              2. 1k k= +   
Until Convergence  

In the next subsection, we will present the error bound of the recovered sparse signal 
 

2.3 Error bound of the Recovered Sparse Signal 
Before presenting the error bound of the recovered sparse signal, we need to prove that 

=0,1,2,( )k
kx



, which is generated by the MM-NcO algorithm, globally converges to the critical 
point of . 

Theorem 1 (Global convergence): We assume the sequence 0,1,2,( )k
k=x



 is generated by the 

Algorithm 1. If ( )F x  has a KL property at the accumulation point lim jk
j→∞=x x , then the 

sequence 0,1,2,( )k
k=x



 converges to ∈x X  as k →∞  and x  is a critical point of F . 
Furthermore, the sequence 0,1,2,( )k

k=x


 has a finite length:  

 1

0
.k k

k

∞
+

=

− < ∞∑ x x   (10) 

 

0x
x̂

F
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Proof: See Appendix A. 
Theorem 1 indicates that the MM-NcO algorithm converges to the critical point x . If 

Algorithm 1 runs until it converges, the critical point x represents the final recovered sparse 
signal.  

We then use the following definition of a Restricted Isometry Property (RIP). 
Definition 1 (RIP): For an integer t = 1, 2, ..., the restricted isometry constant tδ  of the 

matrix Φ  is the smallest number that satisfies (11) for any t -sparse vector .  

 
2 2 2(1 ) (1 )t tδ δ− ≤ ≤ +x x xΦ   (11) 

Here, we consider that matrix Φ  satisfies the RIP of order t  with the constant . 
Under the RIP assumption, we can ensure that the critical point x  is a reasonable 

approximation of the sparse solution if x has a very small 2( )ss x :  

 
*

0

*
2( ) infs

s
s

≤
= −

x
x x x   (12) 

In the previous equation, 𝜎𝜎𝑠𝑠(𝐱𝐱�)2 represents the error of the best s − term approximation of x  
in the 2L -norm [16], while *x  is the true sparse signal.  

Theorem 2 (Recovery Error bound): Assuming that *x  is the s − sparse vector satisfying 
*=y Φx  and that Φ  satisfies the RIP of order 2s  with 2 1sδ < , then, the critical point x  

generated using Algorithm 1 satisfies the following relation:  

 
0

*
2

2 2

( ) 1( 1) ( )
1 1 s

s s

F s
δ δ

− ≤ + +
− −

xx x Φ x   (13) 

Proof: See Appendix B. 
Note 1 (how initialization affects performance): From Theorem 2, a 0x  leading to a smaller 

0( )F x  would achieve a better sparse signal recovery performance. This is because 2sδ  is a 

constant that depends on Φ  and the upper bound of recovery error *−x x  is monotonically 

decreasing as 0( )F x  decreases. Therefore, 0x  leading to a smaller 0( )F x  produces a smaller 
upper bound of a recovery error.  
 

3. The Modified MM-NcO Algorithm with Improved Initialization 
In this section, we introduce a modified MM-NcO with improved initialization by exploiting 
prior information of both support and amplitude of the sparse signal.  
 
 

x

tδ
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3.1 Improved Initialization using Prior Support and Amplitude Information 

Often, sparse patterns of the signals are correlated across time. This property implies that the 
sparse signal ( )tx  at the time slot t  is correlated to all previous sparse signals, namely 

( 1), ( 2), (0)t t− −x x x . Here, we consider the case where ( )tx  only depends on . 

Definition 2 (Prior Information of sparse signals with temporal correlation): Let ( )p tx  be 
the signal obtained by exploiting the prior information on ( )tx , for a time-varying scenario, 

( )p tx  can be characterized by the function of ( 1)t −x , which implies that { }( ) G ( 1)p t t= −x x , 

where G  is the function that transfers ( 1)t −x  to ( )p tx . 

An example for the above definition is that ( )tx  is time invariant, hence ( ) ( 1)p t t= −x x . 
Moreover, as discussed later in the context of time-varying wireless channels, G  is a 
first-order Gauss-Markov random process, which leads to the following relationship between 

 and : 

 ( ) ( 1) ( )p t t tβ= − +x x u   (14) 

Details of (14) are presented in Section 4. However, in practice only an estimate of ( 1)t −x , 
i.e., ˆ ( 1)t −x  is available. Thus, in practice we modify Definition 2 to yield:  

 { }ˆ( ) G ( 1)p t t= −x x   (15) 

Proposition 1: Because ˆ ( 1)t −x  is estimated using a sparse recovery algorithm, such as 
ADMM or conventional MM-based NcO, ˆ ( 1)t −x  would have a smaller distance to the true 
sparse signal *( 1)t −x at time slot 1t −  than an arbitrary sparse signal . 

Proof: See Appendix C. 

Proposition 2: A sparse 0x  with a smaller 0 *−x x  would lead to a smaller 0( )F x  

Proof: See Appendix C. 
Proposition 3: A method to determine a improved initialization point: ( )p tx  generated by 

(15) represents a improved initialization point than the arbitrary initialization point .  
Proof: See Appendix C. 

3.2 Modified MM-NcO 

Proposition 3 implies that we can find an improved initialization px  by exploiting the prior 

information of temporal correlated sparse signals. Using the improved initialization px , the 
recovery performance of a conventional MM-NcO can be improved. Hence, we introduce the 
modified MM-NcO algorithm. In contrast to the conventional MM-NcO algorithm, which 
uses the arbitrary initial point 0x , the proposed modified MM-NcO algorithm uses an 
improved initialization px  by exploiting the prior information of support and amplitude of 
temporal correlated sparse signals to improve recovery.  

Moreover, the prior information of support and amplitude of the sparse signal incurs 
inevitable errors. To eliminate performance degradation caused by these errors, we propose 

( 1)t −x

( )p tx ( 1)t −x

( 1)t −x

0x
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adding a decreasing smoothening parameter ε k , where 0 1
minε ε ε ε> > > ≥

k . Inspired by 
the selection method of 0ε  in [6], we let 0

max min( /10,10 )ε ∈ p px x , where maxpx  is the 

maximal element of px , and minpx  is the minimal element of px . This choice of ε k  can 
preserve the dominant prior information of the sparse signal and smooth out the undesirable 
points. As a result, the initialization of the modified MM-NcO is . 

Here, we seek the convex upper bound approximation ( )
k

Px x  in (6) using the Local 
Quadratic Approximation (LQA) [17]. In (6), ( )p x  is concave and therefore below its tangent 
[6]. Thus, linearizing ( )p x  at kx x=  yields the following inequality: 

( ) ( ) ( )( )k k kp x p x p x x x′≤ + − , where ( )kp x′  is the gradient of ( )p x  at kx x= . Using the 

inequality 
2

2 2

k

k

x xx
x

≤ + . We obtain the convex upper bound approximation as 

2( )( , ) ( ) ( )
2 2

k
k k

x k k k
k

p x xp x x x p x p x
x
′

′= + − . Then, ( )
k

Px x  can be obtained by:  

 
1

1( ) ( , )
2

k
N

k T k
i

i
P p x x c

=

= = +∑x x x W x   (16) 

where 
1 1( ). /

( ( ). / )
( ). /

k k

k k k

k k
N N

p x x
diag p

p x x

′ 
  ′= = 
 ′ 

W x x , and c  is independent of x .  

Using the initialization 0( + )εpx  and the convex upper bound approximation ( )
k

Px x , the 
pseudo code for a modified MM-NcO algorithm (Modified MM-NcO) can be presented as 
Algorithm 2: 

 
Algorithm 2 Modified MM-NcO 

 
Input: 1) Improved initialization point  obtained by exploiting the prior support and 

amplitude information of temporal correlated sparse signals 
2) Measure matrix 𝚽𝚽 ∈ ℝ𝑀𝑀×𝑁𝑁 

Output: Estimated   
1. Initialization: Let 0

max min( /10,10 )ε ∈ p px x , 0 0+p pε ε=x x , 8
min 10ε −= , and 0k =   

Repeat: 
2. +k k k

p pε ε=x x  

3. 1 1( )k T k T
p pε
+ −= +x Φ Φ W Φ y , where ( ( ). / )k k k

p p pdiag pε ε ε′=W x x   

4. , If 1
min

kε ε+ ≤ , then  
5. 1k k= +   
Until convergence 
6. Let 1ˆ k

p
+←x x , and return x̂   

0( + )εpx

px

x̂

1 /10k kε ε+ = 1
min

kε ε+ =
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(1) Improved initialization point formulation (Step 1): we let 0 0 0

max min( /10,10 )ε ∈ p px x  and

+ε ε=k k k
p px x  to formulate an improved initialization 0

pεx . 

(2) Sparse signal estimation (Step 2- 6): In Step 2, the estimation from the last iteration k
px  is 

used to formulate the upper bound for the current iteration. Minimizing 2 1
2

T k
pε− +Φx y x W x  

with respect to x  and setting it to 0 , we obtain 1 1( )k T k T
p pε
+ −= +x Φ Φ W Φ y , which represents 

the estimation of current iteration – see Step 3. Step 4 decreases kε , and checks if kε  reaches 
its minimal value. The main difference between our modified MM-NcO algorithm and the 
conventional MM-NcO algorithm is that the new algorithm uses prior information of both 
support and amplitude of temporal correlated sparse signals. In addition, it uses ε k  to preserve 
the dominant prior information of the sparse signal and smooths out irrelevant data points. 

4. Application in time-varying sparse channels 
In this section, we use the proposed sparse signal recovery algorithm (modified MM-NcO) to 
solve a sparse time-varying channels estimation problem. In many wireless communication 
systems, channel estimation is crucial, especially when wireless channels change over time 
[21]. Recently, it was found that, in several scenarios, wireless channels show intrinsic 
sparsity, i.e., only a few channel-gains are dominant [3, 22]. Further studies revealed that, 
besides sparsity, practical wireless channels show temporal correlation [24, 28, 29]. The 
common method to leverage both temporal correlation and sparsity is to use batch processing 
methods [23-26, 33].  

These batch processing approaches [23-26, 33], however, have two drawbacks. For 
example, they require several measurements over a period of time and they have to process 
these measurements simultaneously to obtain channel estimation results. This procedure 
excludes the batch processing approaches from an online estimation of time-varying sparse 
wireless channels. Another drawback of Structured Compressive Sensing (SCS) based batch 
processing approaches (e.g. [23], [24], [26], [33]) is that they use the 2L  norm to select the 
supports of sparse signals. This implies that they use only the prior information of support of 
the sparse signal, which decreases SCS robustness with regard to noise.  

To solve the disadvantages of batch processing methods, we use the proposed Modified 
MM-NcO algorithm to estimate the sparse time-varying channels with temporal correlation, as 
a result, we introduce a Particle Filtering (PF) aided Modified MM-NcO algorithm. Unlike 
previous studies that aimed to eliminate inter-relay interference (IRI) in cooperative OFDM 
channels [35], our work here aims to improve estimation performance for time-varying sparse 
wireless channels. 

4.1 Problem Formulation 
We now consider the estimation of a time-varying sparse channel ( )th ∈ ℝ𝑁𝑁×1  from 
measurements ( )ty ∈ ℝ𝑁𝑁×1, 0,1,2,t =  . Here, t  depends on a sample period of the wireless 
communication system. For instance, if we consider the LTE-Advanced system working at the 
carrier frequency of 2 GHz with a signal bandwidth sf  of 10 MHz [24], then, time slot is equal 
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to the system sample period 1 / 0.1s sT f sµ= = . The measurement vector ( )ty  at time slot t   
can be obtained using a linear measurement:  
 ( ) ( )t t= +y Φh N   (17) 

where 𝚽𝚽 ∈ ℝ𝑀𝑀×𝑁𝑁 is the matrix of training pilots ( M  is far less than N , M ≪ N ) [27], Φ  is 
time-invariant and drawn from a zero-mean Gaussian distribution, N ∈ ℝ𝑀𝑀×1  is the 
measurement noise, and N ~𝒩𝒩 2(0, )σ I . 

Recent studies [28-29] show that a time-varying sparse channel is temporarily correlated 
with the channel state from previous time slot. This correlation of time-varying sparse 
channels can be modeled using the first-order Gauss-Markov random process:  
   (18) 
where (0,1)β ∈  is based on the priori knowledge of the propagation environment, and 
u(t)~ 𝒩𝒩  is the driving noise [25, 28-29].  

Equation (18) indicates that, although the amplitude of ( )th  continuously changes, 
supp( ( 1)), ,supp( ( ))t t I+ +h h  are invariant over I  time slots. Based on this common 
sparsity, the SCS algorithm waits for I  measurements and estimates  ( 1), , ( )t t I+ +h h  
simultaneously to enhance channel estimation performance. However, the SCS algorithm still 
has the two main drawbacks as previously mentioned.  

4.2 Proposed Algorithm 
To solve previously mentioned drawbacks of SCS, we propose a Particle Filtering (PF) aided 
modified MM-NcO algorithm (PF-Modified MM-NcO). We first use a conventional sparse 
signal recovery method, such as YALL1 [18], to obtain the estimated ˆ (0)h .Then, by utilizing 
the temporal correlation model defined by (18), we use the Particle Filter [30, 32] to obtain 

( )p th . Finally, we let ( )p p t←x h , and run Algorithm 2 (Modified MM-NcO) to obtain an 

accurate estimate of ˆ ( )th . The proposed algorithm is depicted in Fig. 1, and its corresponding 
pseudo code is given in Algorithm 3.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Graphical model of the proposed Algorithm 3 
 
 
 

( ) ( 1) ( )t t tβ= − +h h u

2(0, )dσ I

Majorization: 
Construct 

( )εpF x x   
 

( )p p t←x h

  
Minimization: 
Generate 1+k

px , 
Iteratively 
 

( )ty
  

 ˆ ˆ( )t ←h xParticle 
Filter 

Delay ˆ ( 1)t −h   

Algorithm 2 (Modified MM-NcO) 
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Algorithm 3 PF-Modified MM-NcO 
 
Input: Received signals: , matrix of training pilots:  

Output: the estimated channels  

1. Initialization: 0t ← ,  

Repeat: 
2. For 1,2,t =    

3. For 1: pj N=   

4. Prediction: ( )j t =h 𝒩𝒩 2ˆ( ( 1), )dtβ σ−h I   
5. Particle weight update: ( )= ( ( ) | ( ))j jt p t tw y h , where ( ( ) | ( ))jp t ty h  is the likelihood 

function of ( )ty  
End For 

6. Particle weight normalization:   

7. Estimation:  

8. ( )p p t←x h  

9. Initiate Algorithm 2 using , and run Algorithm 2 to obtain x̂ .  

10. Let , and return ˆ ( )th   

 
(1) Particle Filtering (Step 3 to Step 7): Given the number of particles pN , Step 4 predicts the 
jth particle ( )j th  using the temporal correlation model (18). Step 5 updates the associated 
weight ( )j tw  of the jth particle using ( )= ( ( ) | ( ))j jt p t tw y h , where ( ( ) | ( ))jp t ty h  is the 
likelihood function of ( )ty . The weights are normalized in Step 6. The estimation ( )p th  by 
Particle Filtering is finally obtained in Step 7.  
(2) Modified MM-NcO (Step 8 to Step 9): In step 8 and step 9, we initiate Algorithm 2 by 
using ( )p p t=x h  and run Algorithm 2 to obtain x̂ , respectively. In Step10, we use x̂  as a 

final estimation of ˆ ( )th  at time slot . 
In contrast to the SCS, the proposed PF-Modified MM-NcO has several desirable features. 

First, the PF-Modified MM-NcO algorithm estimates time-varying sparse channels in an 
online fashion (the proposed algorithm has access only to the present and previous time slots 
when estimating the channel of the present time slot). Second, unlike the SCS that uses 2L  
norm to select supports of the sparse signals, the PF-Modified MM-NcO is based on a 
non-convex sparse promoting function, which is more robust with respect to noise. Third, the 
PF-Modified MM-NcO algorithm simultaneously exploits the prior information of support 
and amplitude of the sparse signal. 

 

( )ty Φ
ˆ ( )th

2ˆ (0) arg min (0)= − +
h

h Φh y h

1
( ) ( ) / ( )

pN
j j j

j
t t t

=

= ∑w w w

( ) ( ) ( )
pN

j j
p

j
t t t=∑h w h

px
ˆ ˆ( )t ←h x

t
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Note 2 (the relationship between the proposed Algorithm 2 and 3): Algorithm 2 (Modified 
MM-NcO) represents a general method to improve the recovery performance of the 
conventional MM-NcO by exploiting the prior information of both support and amplitude of 
the sparse signal with temporal correlation. However, the method to obtain the prior 
information depends on the specific application. Algorithm 3 uses PF to obtain the prior 
information by utilizing the temporal correlation model of time-varying sparse wireless 
channels. In other words, Algorithm 3 is a specific application of Algorithm 2 to estimate the 
time-varying sparse wireless channels with temporal correlation.  

4.3 Computational Complexity 
The computational complexity of the proposed PF-Modified MM-NcO relates to two parts: 

(1) Particle Filtering, and (2) modified MM-NcO. The computational complexity of the 
Particle Filtering part is mainly determined by the complexity of Step 5 in Algorithm 3. For 
each time slot of Algorithm 3, the computational complexity of Step 5 is ( )pMNN . The 
computational complexity of the modified MM-NcO part is determined by the complexity of 
Step 3 in Algorithm 2. For each iteration of Algorithm 2, the computational complexity of Step 
3 is 3( )N MN+ . Then, the total complexity of the proposed algorithm at each time slot is: 

3( ( ) )pMNN N MN k+ + . Due to the property of compressed measurements, the value for 
M is usually small. Moreover, we found that the number of iterations needed for Algorithm 2 
to converge is small ( 10k <  at some time slots). This means that the value for k  is also small 
because Algorithm 2 exploits the prior information of support and amplitude of sparse signal 
to formulate an improved initialization. These two properties are responsible for the 
acceptable complexity of the proposed Algorithm 3. 

5. Simulation Results and Analysis 
In this section, we consider the estimation of time-varying sparse channels to determine the 
effectiveness of the proposed algorithm. Specifically, we compare the performance of the 
proposed PF-Modified MM-NcO with the performance of the following algorithms: 

Mixed-L1L2: Deploys the ADMM-based mixed 1 2/L L  minimization algorithm [18] to 
estimate the time-varying sparse channels. The  in YALL1 is set to . 

SCS-6: Structured Compressed Sensing [23] with 6  received measurements, i.e., =6I .  
MM-NcO-ran: Deploys the MM-NcO with random initialization, i.e., 0 =x 𝒩𝒩 . 

Genie-aided LS: Serves as a performance upper-bound scenario, in which the channel 
support supp( ( ))th  is assumed to be known, and we directly use the least-square method to 
recover the channel coefficients on .  

We consider the time-varying sparse signal ( )th ∈ ℝ𝑁𝑁×1 with a channel length of 180N = . 
The number of none-zero taps of ( )th  is K , and is set to 12K = . The unit of t  is explained in 
subsection 4.1. The matrix of the training pilots Φ ∈ ℝ𝑀𝑀×𝑁𝑁 was generated as a zero mean 
random Gaussian matrix with columns normalized to the unit 2L  norm, and the length of 
training pilots is M . Furthermore, the received measurements were contaminated by an 
additive Gaussian noise N , and N =𝒩𝒩 2(0, )σ I . For the channel correlation model (25), the 
temporal correlation parameter β  is chosen as 0 1β< < , and the driving noise parameter is 

µ 0.01

(0, )I

supp( ( ))th
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21dσ β= − . The number of particles used in the proposed algorithm is pN , λ  is chosen to 
be 3λ σ= . The estimation performance of the algorithms was measured based on the 
normalized mean-square error (NMSE), i.e., ˆNMSE ( ) ( ) / ( )t t t= −h h h , and the 
time-averaged normalized mean-squared error (A-NMSE), i.e., 

1

1 ˆA-NMSE ( ) ( ) / ( )
T

t
t t t

T =

= -∑ h h h . In the simulations, the time length is set to . 

Fig. 2 shows the NMSE performance for the estimated time-varying sparse channels at each 
time slot. The parameters are set to 45M = , 0.01σ = , 0.7β = , and 5000pN = . Using this 
figure, we find that the MM-NcO-ran fluctuates greatly and performs poorest due to random 
initialization. The SCS outperforms the traditional Mixed-L1L2 by exploiting the common 
sparsity of the time-varying channels. As expected, the proposed PF-Modified MM-NcO 
performs better than other competing algorithms, and it is stable. This is because the proposed 
PF-Modified MM-NcO uses the prior support and amplitude information generated by the PF 
technique to initialize the MM-NcO. Specifically, the performance gain of the PF-Modified 
MM-NcO compared with Mixed L1L2 and MM-NcO-ran demonstrates the advantage of using 
prior information of support and amplitude of the sparse signal. The performance gain of the 
PF-Modified MM-NcO compared with SCS-6 suggests the following benefits: (1) Use of a 
non-convex sparse promoting function, (2) exploitation of prior information of both amplitude 
and support of the sparse signal.  

 
Fig. 2. The NMSE of the estimated sparse channel at each time slot 

 
In Fig. 3, we compare the A-NMSE for the estimated time-varying sparse channels as a 

function of the noise level σ . The parameters are 45M = , 0.7β = , and 5000pN = . Using 
this figure, we can see that the A-NMSE performance of the Mixed-L1L2, SCS-6, the 
proposed PF-Modified MM-NcO, and the genie-aided LS improves monotonically as the 
noise level σ  decreases. On the other hand, the A-NMSE performance of the MM-NcO-ran 
fluctuates and performs worst. Moreover, the performance loss between the proposed 
PF-Modified MM-NcO and the genie-aided LS decreases as the noise level  decreases. 
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Fig. 3. The A-NMSE of estimated sparse channels versus noise level  

 
Fig. 4. The A-NMSE of estimated sparse channels versus length of training pilots  
 
The impact of the length of the training pilots M  is shown in Fig. 4, the parameters are set 

to 0.01σ = , 0.7β = , and 5000pN = . We can see that the A-NMSE performance of the 
Mixed-L1L2 and MM-NcO-ran improves monotonically as M  increases. This is because 
more training pilots can bring more channel-state information and enable a more accurate 
channel estimation. We also observe that the performance of SCS-6, the proposed 
PF-Modified MM-NcO, and the genie-aided LS are not sensitive to the length of the training 
pilots. This is because these three algorithms exploit priori information about the sparse signal. 
Note that the performance of the SCS-6 is worse than the Mixed-L1L2 when M  becomes 
large. This is because, no matter how many pilots are used by SCS-6, SCS-6 would always 
select similar supports of the sparse channels. By contrast, the proposed algorithm approaches 
the genie-aided LS as M  increases. This shows that the proposed algorithm is robust with 
respect to different lengths of the training pilots and can achieve better channel estimation 
performance with substantially fewer training pilots.  
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Fig. 5. The A-NMSE of estimated sparse channels versus the temporal correlation parameter β   
 
In Fig. 5, we compare the A-NMSE of estimated time-varying sparse channels as a function 

of the temporal correlation parameter β . The parameters are set to 0.01σ = , 45M = , and
5000pN = . The time-varying sparse channels with 0β = mean that supp( ( ))th  is different 

between consecutive time slots. Using this figure, we find that the performance of SCS-6 and 
the proposed PF-Modified MM-NcO is worse than the Mixed-L1L2 when 0β = . This is 
because SCS-6 still tries to estimate the sparse channels with common sparsity, and the 
proposed algorithm cannot generate effective particles to initiate MM-NcO. However, the 
SCS-6 and the proposed PF-Modified MM-NcO show a substantially better performance than 
the Mixed-L1L2 when 0β > . The performance of the investigated algorithms shows no 
obvious relation with the temporal correlation when 0β > . Particularly, when 0β = , the 
proposed algorithm performs better than both the MM-NcO-ran and SCS-6 because the 
proposed algorithm still tries to obtain improved initialization by running the PF.  

 

 
Fig. 6. The A-NMSE of estimated sparse channels versus assumed   

 
In Fig. 6, we investigate the impact of a mismatch between the assumed β  and the true β  

on the estimation performances. The true β  is 0.5β = , while the assumed β  is 0.3  and 
0.7 , respectively. The parameters are 0.01σ = , 45M = , and 5000pN = . Clearly, the 
mismatch of β  causes almost no performance degradation. Therefore, it can be stated that our 
proposed algorithm is very robust with respect to mismatching . 
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Fig. 7. The A-NMSE of estimated sparse channels versus the number of particles   

 
In Fig. 7, we can see the impact of the number of particles pN  for different noise levels σ . 

The parameters are 45M = , and 0.7β = . Fig. 7 shows that the proposed algorithm is very 
robust with respect to different numbers of particles.  

 

6. Conclusion 
In this paper, we show that the performance of the convergent MM-NcO-based iterative 
algorithm for sparse signal recovery depends critically on the initial point. Therefore, we 
developed a modified MM-NcO algorithm that uses prior information of both support and 
amplitude of the sparse signal. We used the modified MM-NcO algorithm to estimate the 
time-varying sparse wireless channels with temporal correlation. We then introduced a 
PF-Modified MM-NcO algorithm. The obtained results show that the PF-Modified MM-NcO 
algorithm is effective to estimate time-varying sparse channels with temporal correlation. The 
PF-Modified MM-NcO algorithm proposed in this study estimates time-varying sparse 
channels in an online fashion, which makes it possible to bypass a common limitation of batch 
processing algorithms, such as SCS. Moreover, the proposed algorithm performs better than 
the SCS. The simulation results indicate that our proposed algorithm can effectively estimate 
time-varying sparse wireless channels with temporal correlation using only a small number of 
training pilots. 
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Appendix A 

Proof of Theorem 1 
Proof: Based on Theorem 2 in [13], if we can show that: (1) the proposed function ( )F x  

has the Kurdyka-Łojasiewicz (KL) property, (2) ( )∇P x  and ∇
k

Px  are Lipschitz continuous, 
then our Algorithm 1 converges to a critical point of (6) from every initial point. It is shown in 
[13-14] that the real analytic and sub-analytic functions satisfy the KL property. ( )F x  here is 
a sub-analytic function, thus, ( )F x  has the KL property. We now proceed to prove (2): The 

gradient of ( )p x  is 2 21( ) ( 4 )
2

p x x xλ′ = + − , when 0>x , note that both 

2 2( ) 4f x x λ= +  and ( )f x x=  are Lipschitz continuous with the Lipschitz constant 1=K . 
Then, ( )p x′  is Lipschitz continuous with the Lipschitz constant 0iL ≥ . Therefore, the 
gradient of ( ) ( )ii

P p x=∑x , i.e., ( ) ( )ii
P p x′∇ =∑x  is Lipschitz continuous with the 

Lipschitz constant 0p i i
L L≥ ≥∑ . When 0<x , it is clear that we can draw the same 

conclusion. Next, we prove that ∇
k

Px  are Lipschitz continuous: the gradient of kPx  is 

kx kP∇ = W x , 
2

2 2

2( )
( ( ) 4 )

k

k k k
diag

x x x
λ

λ
=

+ +
W . Note that kx  is bounded. If we let the 

maximal value of kW  be max
kW , the gradients of 

k

Px , i.e., 
k

P∇ x  is locally Lipschitz 
continuous on a bounded set B  for all ∈x X  with the common Lipschitz constant 

.  

Appendix B 

Proof of Theorem 2 

Proof: We let S  be an index set of nonzero entries of *x  and S  be an index set of s  
largest entries of the absolute value of x . Since, , we obtain: 

 

* *

* *

*

* *
( )

*
( )

2

( )
2 2

( ) ( )

1 ( ) ( )
1

1 1( 1) ( )
1 1

c

c

c

S S S S

S S S S
s

S S
s s

δ

δ δ

− ≤ − +

≤ − +
−

≤ − + +
− −

x x x x x

Φ x x x

Φx y Φ x

 

 



  (19) 

 

max 0k
pL W≥ >

*

0
s≤x
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In addition, since , we finally have:  

 
0

*
2

2 2

( ) 1( 1) ( )
1 1 s

s s

F s
δ δ

− ≤ + +
− −

xx x Φ x   (20) 

Appendix C 

Proof of Propositon1-3 

Proof of proposition 1: If the true signal vector is *( 1) [0,0,1,0,0]Tt − =x , since ˆ ( 1)t −x  is 

estimated by a sparse recovery algorithm, *ˆ ( 1) ( 1)t t−− −x x  is often smaller than 0.1 [18]. 

However, assuming an arbitrary sparse signal is ( 1) [1,0,0,0,1]Tt − =x , then, 
*( 1) ( ) .71 1t t− −− ≈x x  which is bigger than . 

Proof of proposition 2: ( )F x  is the sum of the data-fitting term and sparse penalty term. So 

a sparse 0x  with a smaller 0 *−x x  would lead to a smaller . 

Proof of proposition 3: ˆ ( 1)t −x  has a smaller distance to the true sparse signal *( 1)t −x  
than an arbitrary sparse signal ( 1)t −x . If G  can be accurately determined, then ( )p tx  has a 

smaller distance to the true sparse signal *( )tx . Based on proposition 2, we use ( )p tx  as the 

initialization point 0x  leads to a smaller 0( )F x . According to Note 1, improved sparse signal 
recovery performance can be achieved by using ( )p tx  as the initialization point . 
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