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Abstract 
Distributed compressed sensing (DCS) states that we can recover the sparse signals from very few linear 
measurements. Various studies about DCS have been carried out recently. In many practical applications, there 
is no prior information except for standard sparsity on signals. The typical example is the sparse signals have 
block-sparse structures whose non-zero coefficients occurring in clusters, while the cluster pattern is usually 
unavailable as the prior information. To discuss this issue, a new algorithm, called backtracking-based adaptive 
orthogonal matching pursuit for block distributed compressed sensing (DCSBBAOMP), is proposed. In 
contrast to existing block methods which consider the single-channel signal reconstruction, the DCSBBAOMP 
resorts to the multi-channel signals reconstruction. Moreover, this algorithm is an iterative approach, which 
consists of forward selection and backward removal stages in each iteration. An advantage of this method is 
that perfect reconstruction performance can be achieved without prior information on the block-sparsity 
structure. Numerical experiments are provided to illustrate the desirable performance of the proposed method. 
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1. Introduction 

Distributed compressed sensing (DCS) is a signals recovery framework for acquiring sparse signals 
where both sensing and compression are performed at the same time. It uses sparsity of signals to recovery 
the signals from the measurements [1,2]. 

The DCS model can be stated as: 

Y = ΦX ,                                                                           (1) 

where M NΦ   is a random measurement matrix. This system model describes an under-determined 

system, where M N . 1 2[ , , , ]JY y y y  are the measure vectors and 1 2[ , , , ]JX x x x are 

unknown sparse vectors. The signal vector ix
 
has ( )iK  non-zero components and indices with 

cardinality ( )
0supp( ) i

i i K x x . The goal of DCS model is to reconstruct X  from Y . The method 
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is that 

i iy Ax      subject to  
0

min ix    i ,                                             (2) 

where 
0ix is the 0l -norm of ix . 

In practice, the DCS problem can be relaxed as an approximate convex optimization problem [3]: 

2

2
{ } 1

arg min
i

K

i i
i


x

y Ax  subject to 
0

   i K i x .                                     (3) 

Here, the parameter K  states the maximum sparsity of the ix . 
If the signals X  are independent, the reconstruction problem can be divided into J  individual 

problems, we can reconstruct each signal independently by using the compressed sensing (CS) 
framework [4,5]. The more interesting case is when the signals , 1, 2, ,i i Jx   are correlated among 
each other. Then we can reconstruct X  jointly using DCS algorithms [6-10]. Moreover, it was shown 
that signals reconstruction based on DCS could save about 30% of measurements than using CS on each 
source [6]. 

Problem (3) is thought to be NP-hard [6]. Many pursuit algorithms [7-10] have been introduced to 
recovery the signals with tractable complexity. It has been shown in paper [11] that 1l -norm constraint 
is sufficient to ensure the sparsest solution for many high-dimensional cases. 

DCS was defined by Duarte et al. [12] firstly. Two different joint sparse models (JSMs) were proposed 
by them. Subsequently, many algorithms were carried out. A new DCS algorithm was introduced in [7] 
and it exploited signal to signal correlation structures. Wakin et al. [13] proposed a simultaneous 
orthogonal matching pursuit (OMP) [14] method for DCS (named as jointOMP), which can reduce the 
number of measurements. Unfortunately, there is no backtracking mechanism in jointOMP, which leads 
to the worse recovery performance. To overcome the drawback, the subspace pursuit method for DCS 
(DCSSP) was proposed in [15]. A new joint sparse recovery method, called orthogonal subspace matching 
pursuit (OSMP), is proposed in [16]. Nevertheless, those algorithms have a common limitation that the 
signals sparsity must be pre-known, whereas it is usually unpractical in practice. Recently, two new 
recovery methods, named forward-backward pursuit method for DCS (DCSFBP) and backtracking-
based adaptive OMP method for DCS (DCSBAOMP), are proposed [9,10]. In [17], 1 2/l l -norm is used 
to enforce joint sparsity on the signals. However, the above methods do not take into account the 
structures of signals or their representations. Sometimes, each signal jx

 
under consideration is 

structured in nature, e.g., the structure of block sparse that the non-zero coefficients of signals occurring 
in cluster. The block-sparse signals appear in many applications including gene expression analysis [18] 
and equalization of sparse communication channels [19]. 

Block-sparse signal reconstruction algorithms were introduced and investigated in recent literatures. 
Here, we focus on the DCS of block-sparse signals. For a given matrix M NΦ  , we reconstruct block-
sparse signals X  from Y = ΦX . Here X  with block size d  can be formed as 

[1]
[2]

[ ]l

 
 
 
 
 
 

X
X

X

X


,                                                                    (4) 
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where      ( 1) 1 : ,1 ( 1) 1 : ,2 ( 1) 1 : ,[ ] ( ,  ,  ,  ) d J
i d id i d id i d id Ji 
      X x x x   denotes the ith block matrix with 

length d  and .N ld  The matrix X  is said to be K -block sparse if [ ]iX  has nonzero Euclidean norm 
for at most K  entries i . Denote 

2,0 2
1

( [ ] 0)
l

i
I i



 X X , 

where 
2

( [ ] 0)I i X  is an indicator function. In this case, a block K -sparse matrix X  can be defined 

as 
2,0

KX  [20]. Then the total sparsity of X  is totalK K d J   . Similarly to (4), the measure 

matrix Φ  is denoted as the following block form, 

1 1 2 1
[1] [2] [ ]

, , , , , , , , ,d d d N d N
l

  

 
 
 
 Φ Φ Φ

Φ φ φ φ φ φ φ      ,

                                           

(5) 

here [ ]iΦ is a submatrix of size M d . The supports of the coefficient matrix X  are 

2( ) { , [ ] 0}i i  X X [20]. 

Here, the reconstruction problem can be relaxed as a convex optimization by 

 

2

{ [ ]} 1

2

[1]
arg min [1], , [ ]

[ ]

K

i i
l

l

 
   
  


X

X
Y Φ Φ

X
   subject to 

2,0 2
1

( [ ] 0)  
l

i
I i K



  X X .           (6) 

This problem is also a NP-hard problem. One natural idea is to replace the 2 0/l l -norm by 2 1/l l -norm, 
that is 

2,1
min X subject to Y ΦX ,                                                      (7) 

where 
2,1 2

1

[ ]
l

i
i



 X X . 

Specifically, in [21], the block compressive sampling matching pursuit (BCoSaMP), which is based on 
the compressive sampling matching pursuit (CoSaMP) [22], was proposed. Eldar et al. [23] proposed the 
block version of the OMP (BOMP) algorithm for block-sparse signal recovery. In [24], a dictionary 
optimization problem for block-sparse signal reconstruction was investigated, but this method needed 
the maximum block length as the prior information. Another approaches, such as iterative hard 
thresholding (IHT) [21], block subspace pursuit (BSP) [25] and block StOMP (BStOMP) [26] have been 
investigated to date. However, most of the block algorithms deal with the single signal reconstruction. 

Since DCS algorithms do not take into account the block structures of signals and most of the existing 
block compressed sensing algorithms just deal with the single-channel signal. In this paper, by 
incorporating the technique of DCS and the additional structure of block sparse signals, we propose a 
new recovery mechanism to solve the block DCS problem, called the backtracking-based adaptive OMP 
for block DCS (DCSBBAOMP) algorithm. In contrast to the most existing approaches, the new method 
can recover the block sparse signals simultaneously without the sparsity structure information. 
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Meanwhile, the new method can recover multiple sparse signals from their compressive measurements. 
Numerical experiments including recovery of random artificial sparse signals and the real-life data are 
provided to illustrate the desirable performance of the proposed method. 

The rest of the paper is organized as follows: in the next section, the block sparse signals reconstruction 
method is presented. Experimental results are presented in Section 3 to compare the proposed algorithm 
with DCSBAOMP, backtracking-based adaptive OMP for block sparse signal (BBAOMP), DCSFBP and 
DCSSP. In Section 4, conclusions and future work are presented. 

 
 

2. Proposed Algorithm for Block-Sparse Signals 

As the extension of OMP, BBAOMP and DCSBAOMP were proposed by Qi et al. [27] and Zhang et al. 
[9], respectively. Those algorithms first find one or several atoms which corresponding to the much larger 
correlation between measurement vectors and residual. To be mentioned, the atoms chosen in the 
previous stage may be wrong. And then backtracking procedure is used to refine the estimated support 
set. In the next, these two methods obtain a new residual by using the least-square fit. BAOMP and 
DCSBAOMP methods do not need signals sparsity as a prior, they are repeated until the residual is 
smaller than a threshold or the iteration count reaches the number of maximum iteration. The main 
difference between BBAOMP and DCSBAOMP is that the BBAOMP algorithm is a single-channel 
method, which deals with block sparse signal, while DCSBAOMP algorithm is a multi-channel method. 
In this paper, we generalize the DCSBAOMP method to deal with the block sparse signals. 

Generalizing the DCSBAOMP algorithm to the block sparse signals, we obtain the DCSBBAOMP 
algorithm. In this method, the measurement matrix  is considered to be a dictionary with each block 

column matrix . It first chooses several block indices  whose correlations between the residual 

 and the block columns  are not smaller than , , and 

then subtracts some wrong block indices  which corresponding the indices of  are not larger 

than , the final estimated support set will be identified after several iterations.  

returns the 2-norm of matrix , and it is equal to the largest singular value of . The details about the 
DCSBBAOMP algorithm are shown in Algorithm 1. 

In this algorithm, μ1 is a constant which determines the number of block indices chosen at each time. 
When μ1=1, only one block index is selected. When μ1 becomes smaller, the DCSBBAOMP algorithm can 
select more than one block index at every iteration. Smaller μ1 results in much more block indices are 
selected at each time and then speeds up the algorithm. Unfortunately, the block indices selected at the 
above process may be wrong. μ2 is a parameter determining the number of deleted block indices. 
Similarly, bigger μ2 results in smaller deleted block indices and slows down the algorithm. In many 
experiments, we find that the choice of μ1 and μ2 is same as those of BAOMP and DCSBAOMP. So in this 
paper, we do not discuss the change of μ1 and μ2 and choose the same values with BBAOMP and 
DCSBAOMP while μ1=0.4 and μ2=0.6. After updating the support set F, we generate a new residual by 
using the least-square fit. Due to the block sparsity K is not known in advance, the DCSBBAOMP 

algorithm is repeated until the residual  is smaller than a threshold ε or the iteration count n reaches 
the number of maximum iterations . 

Φ

[ ]iΦ nC
1nres [ ]iΦ

1

1
1

2
max , [ ]n

j
j 


 res Φ

1 ={1,2, , }l 
n

2
[ ]n

F iX

2 2
max [ ]

n

n
F

j C
j


 X

2
X

X X
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maxn
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Algorithm 1. DCSBBAOMP algorithm
Input:       

Initialization: estimated support set , initial solution , 

                       initial residual , iteration count:  
                       candidate set: , delete set:  

                       while  and  do 

Step 1 (Forward): find the candidate set  that satisfying 

 

Step 2: compute ,  

Step 3 (Backward): select the atom-delete set  in which the block indices  satisfying 

,  

Step 4 (Update): , ,  
Step 5 (Output): The estimation of sparse signals is   and  

 
 

3. Simulations and Results 

In this section, several experiments are simulated to illustrate the performance of the proposed 
DCSBBAOMP method, which compared with DCSBAOMP, BBAOMP, DCSFBP and DCSSP algorithms. 

In each trial, the block sparse signals  are artificially generated as follows: for a fixed sparsity K, we 
randomly choose the nonzero blocks. Each element in the nonzero blocks is drawn from standard 
Gaussian distribution  and the elements of other blocks are zeros. The observation matrix is 

, where the entries of sensing matrix  are generated from standard Gaussian 
distribution  independently. Firstly, we give two experiments including the changes of sparsity 
and number of measurements to compare the SNR and the run time of DCSBBAOMP with those of 
DCSBAOMP, BBAOMP, DCSFBP and DCSSP. Then we discuss the changes of reconstruction 
performance without the block size. Finally, the proposed method is tested on electrocardiography (ECG) 
signals. 

To evaluate its performance, we use a measure named signal-to-noise ratio (SNR) defined as [10]: 

                                                                   

(8) 

where  denote the original signals and  denote the reconstructed signals, respectively. 
To be mentioned, each test is repeated 100 times. Then we compute the average values of SNR and 

running time, respectively. In the following experiments, the proposed method uses 
 as the input parameters. For simplicity, in all the experiments, the 

sparse_value on x-axis is equal to , that is, 

.                                                            (9) 

1 2 max, , , , ,Y n  

F   0 X 0
0 res Y 1n 

0C   0  

2
n res maxn n

nC

 
1

1 1
1 1

2 2
, [ ] max , [ ] , 1, 2, ,n n n

j
C j l 


   res Φ res Φ 

nF F C  †n
F FX Φ Y

n i

22 2
[ ] max [ ]

n

n n
F F

j C
i j


 X X i F

\ nF F  1n n  †n
F F res Y Φ Φ Y

 [ 1, 2, , ] 0l F X  †[ ] FF X Φ Y

X

(0,1)N

Y = ΦX M NΦ 
(0,1)N

2

2
2

2

10log
ˆ

SNR ,
 
 
   


X

X X

X X̂

6
1 2 max0.4,  0.6,  ,  10n M      

/totalK J

sparse _ value totalK
J
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3.1 The Recovery Performance versus Sparsity with Small Sample 
 

In the first experiment, the recovery performance is observed as the sparse_value varies from 10 to 70 
with the fixed block size d=2 and M=128, N=256, J=3. The average SNR and run time are shown in the 
Fig. 1. 

As can be seen from Fig. 1(a), the SNR of all the algorithms decreases slightly as the sparse_value varies 
from 10 to 70. DCSBAOMP and DCSBBAOMP algorithms obtain the similarly better SNR in here. When 
sparse_value > 60, the performance decreases significantly. The reason is that sparse_value is close to M/2, 
the recovery performance will fall down [28]. Fig. 1(b) depicts that the run time of all the algorithms 
increases as the sparse_value varies from 10 to 70. Specially, the DCSBAOMP gives much litter run time 
among the five algorithms. The reason lies in two aspects, one is that the DCSBAOMP algorithm is a multi- 
channel algorithm, which accelerates the speed of the algorithm; the other is that the DCSBAOMP utilizes 
the backtracking procedure, which leads to better reconstruction performance and shorter run time. 

 

  
(a)  (b) 

Fig. 1. Reconstruction results over the sparse_value. The numerical values on x-axis denote the sparse_value 
of signals and those on y-axis represent the SNR (a) and run time (b).  
 

 
(a)  (b) 

Fig. 2. Reconstruction results over the number of measurement M. The numerical values on x-axis denote 
the number of measurement M and those on y-axis represent the SNR (a) and run time (b). 
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3.2 The Recovery Performance versus Number of Measurement 
 

In this experiment, we compare the SNR and run time as the number of measurement M varies from 
64 to 176, where N=256, sparse_value=30, J=3. 

From Fig. 2, as the number of measurement M increases, for all the five algorithms, the SNR increases 
while the run time decreases. Meanwhile, all the algorithms can obtain similar SNR and the run time with 
M > 90. When the number of measurement M  < 90, performance of our algorithm is better than that of 
other algorithms except for DCSFBP. Although DCSSP has the largest SNR in this experiment, the run 
time of DCSSP is not stable compared with other algorithms. 

 
3.3 The Recovery Performance versus Sparsity with Medium Sample 
 

In this experiment, the recovery performance is observed as the sparse_value varies from 40 to 200 with 
the fixed block size d=8 and M=512, N=1024, J=3. The average SNR and run time are shown in the Fig. 3. 

As can be seen from Fig. 3, the SNR curves decrease slightly and the run time curves increase as the 
sparse_value increases. It is obviously that DCSSP algorithm achieves the highest SNR, while the SNR of 
another four algorithms is more or less similar. However, the run time of DCSSP algorithm is longest 
among the above methods. To be mentioned, although the SNR of our method is not the highest, our 
method is more computational effective than other methods. 

 

 
(a)  (b) 

Fig. 3. Reconstruction results over the sparse_value. The numerical values on x-axis denote the sparse_ 
value and those on y-axis represent the SNR (a) and run time (b). 

 
3.4 The Recovery Performance versus Number of Block Size 
 

In this experiment, we compare the SNR and run time as the number of block  varies from 4 to 16 
with step size 4. M=512, N=1024, sparse_value=120, J=3 are fixed. Fig. 4 demonstrates the experimental 
results. 

From Fig. 4, we can see that the SNR and run time of all the algorithms do not change any more as the 
block size d varies from 4 to 16. That is to say, if we fix the total sparsity of the block sparse signals, 
different block size of sparse signals does not affect the property of all the algorithms. 
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(a)  (b) 

Fig. 4. Reconstruction results over the number of block d. The numerical values on x-axis denote the 
number of block d and those on y-axis represent the SNR (a) and run time (b). 

 
3.5 The Recovery Performance with Unknown Block Size 
 
3.5.1 The block size of our algorithm is fixed to 8 
 

In this trail, we test the performance of our algorithm when the block size d is unknown. M=512, 
N=1024, sparse_value=120, J=3 are fixed. We generate the sources with block size d=8. Note that the 
block size is unknown in recovery process. Then we change the block size from 2 to 26 with step size 2 in 
the recovery process. The results are shown in Fig. 5. 

 

 
(a)  (b) 

Fig. 5. Reconstruction results with unknown block d. The numerical values on x-axis denote the number 
of block d and those on y-axis represent the SNR (a) and run time (b); when we generate the source with 
block size d = 8. 

 
3.5.2 The block size of our algorithm is fixed to 5 
 

In this trail, we generate the sources with block size d=5 instead of d=8. M=512, N=1024, Ktotal=120, J=3 
are fixed. Then we change the block size from 3 to 16 with step size 1 in the recovery process. The results 
are shown in Fig. 6. 
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(a)  (b) 

Fig. 6. Reconstruction results with unknown block d. The numerical values on x-axis denote the number 
of block d and those on y-axis represent the SNR (a) and run time (b); when we generate the source with 
block size d = 5. 

 
From Figs. 5 and 6, when the block size choosing in our algorithm is the multiple of real block size, we 

can obtain much better reconstruction performance than the performance of other block size. Generally 
speaking, if the real block size d of sources is known in advance, we can get the best performance in the 
experiments with our algorithm. 

 
3.6 ECG Signals Recovery 
 

In this subsection, we apply our algorithm to the ECG data. Because the sparsity of signals need to be 
known in DCSSP, we only compare the performance of DCSBBAOMP with that of DCSBAOMP, 
DCSFBP, DCSSAMP and BBAOMP. We obtain the ECG data from the PhysioNet [29]. In this 
experiment, three patients are chosen randomly as the source signals . Then we randomly generate one 

Gaussian matrix , where N=1024, M=512. The process of signals generation is the same as the 
literature [9]. From Fig. 7(a), we can see that the ECG data themselves are not sparse. Then we apply the 
orthogonal Daubechies wavelets (db1)  to ECG signals. Fig. 7(b) shows the transformed sparse signals. 
Then all of the algorithms are applied to recover  from . Fig. 7(c) depicts the 

recovered signals  and Fig. 7(d) shows the corresponding sparse signals . The performance and the 
run time are shown in Table 1. 

 
Table 1. Average reconstruction SNR and run time of block sparse signals using different methods 

 Our algorithm DCSBAOMP DCSFBP DCSSAMP BBAOMP 
Average SNR 180.2198 73.4399 69.5612 148.0398 200.0362 

Run time (s) 20.6002 13.8757 51.2670 11.6684 78.2678 

 
From Table 1, one can see that the performance of BBAOMP is best but it needs more time to recover 

the signals since this method is a single-channel method. Except for BBAOMP, our algorithm obtains the 
highest average SNR, and the run time is similar to other methods. 

2 4 6 8 10 12 14 16
0.5

1

1.5

2

2.5

3
x 10

4

d

S
N

R

M=512, N=1024

2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

d

E
la

ps
ed

T
im

e

run time, M=512, N=1024

X
M NΦ 

Ψ
θ  Y ΦX ΦΨθ

X θ



Xingyi Chen, Yujie Zhang, and Rui Qi 
 

 

J Inf Process Syst, Vol.15, No.2, pp.410~421, April 2019 | 419 

 
(a)  (b) 

 
(c)  (d) 

Fig. 7. The electrocardiography (ECG) signals in signal channel no#1 of three patients which are selected 
randomly from the PTB Diagnostic ECG Database: (a) the original signals , (b) with orthogonal 
Daubechies waveles (db1), (c) recovered by our algorithm, and (D)  recovered by our algorithm. 

 
 

4. Conclusion 

In this paper, a DCSBBAOMP method for recovery of block sparse signals is proposed. This method 
first chooses atoms adaptively and then removes some atoms that are wrongly chosen at the previous step 
by using backtracking procedure, which promotes the reconstruction property. The most useful 
advantage of our proposed algorithm is that it can recover multiple sparse signals from their compressive 
measurements simultaneously. What’s more, it does not need the block sparsity as a prior. Simulation 
results demonstrate that our method produces much better reconstruction property compared with many 
existing algorithms. 

The two parameters μ1 and μ2 play a key role in our method which provides some flexibility between 
reconstruction property and computational complexity. However, there is no theoretical guidance on 
how to select μ1 and μ2. In addition, theoretical guarantees of that the proposed method can accurately 
recovery the original signals are also not proved. Future works include theoretical analysis of exact 
reconstruction of the proposed algorithm and the treatment of the selection of parameters of μ1 and μ2. 
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