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Abstract 
 

Recently, sparse coding has achieved remarkable success in image representation tasks. In 

practice, the performance of clustering can be significantly improved if limited label 

information is incorporated into sparse coding. To this end, in this paper, a novel 

semi-supervised algorithm, called constrained sparse concept coding (CSCC), is proposed for 

image representation. CSCC considers limited label information into graph embedding as 

additional hard constraints, and hence obtains embedding results that are consistent with label 

information and manifold structure information of the original data. Therefore, CSCC can 

provide a sparse representation which explicitly utilizes the prior knowledge of the data to 

improve the discriminative power in clustering. Besides, a kernelized version of our proposed 

CSCC, namely kernel constrained sparse concept coding (KCSCC), is developed to deal with 

nonlinear data, which leads to more effective clustering performance. The experimental 

evaluations on the MNIST, PIE and Yale image sets show the effectiveness of our proposed 

algorithms. 
 

 

Keywords: Sparse coding; label information; semi-supervised; constraints; manifold; 

kernelized 
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1. Introduction 

In real-world applications, such as face recognition, image retrieval, and data clustering [1, 2, 

3, 4, 5, 13, 14, 15], data representation of high-dimensional space is a challenging problem. 

Generally speaking, the high dimensional data leads to the computational time and memory 

requirements more expensive. Moreover, traditional methods can perform well in 

low-dimensional space, but may degrade in high-dimensional space. To solve these issues, 

many researchers try to seek a representation of the data in a latent semantic “concept” space 

instead of the original space. Therefore, matrix factorization methods based on different 

criterions have attracted considerable attention in the last decades. 

Principal component analysis (PCA) [2] and linear discriminant analysis (LDA) [3] are the 

most popular matrix factorization methods. PCA is completely unsupervised learning method, 

which searches for a projection axis of maximal variance. In contrast with PCA, LDA is a 

supervised learning method, which aims to seek a transformation that maximizes the 

between-class scatter and simultaneously minimizes the within-class scatter. The linear 

methods, however, fail to deal with the nonlinear distribution data. To alleviate this problem, 

the kernel-based methods are developed to discover the essential structures of nonlinear data. 

The representative methods are kernel principal component analysis (KPCA) [4] and kernel 

Fisher discriminant analysis (KFDA) [5], which are the kernel extensions of PCA and LDA, 

respectively. Extensive experiments have shown the effectiveness of KPCA and KFDA in 

many real-world applications.  

A common problem of the previously mentioned methods is that they fail to discover the 

underlying intrinsic manifold structure. To overcome this deficiency, manifold-based learning 

methods are straightforward in detecting the nonlinear structures, which have been of wide 

concern. Yan et al. [6] proposed a general framework, called graph embedding, for 

dimensionality reduction. Many manifold-based learning methods, such as isometric feature 

mapping (ISOMAP) [7], locally linear embedding (LLE) [8], laplacian eigenmaps (LE) [9] 

and locality preserving projection (LPP) [10] can be integrated into this framework. To 

consider the label information of labeled samples, He et al. [11] presented a novel 

semi-supervised learning algorithm, called constrained graph embedding (CGE) for feature 

extraction and data representation. CGE incorporates the limited label information into graph 

embedding as additional constraints. Experimental results on real data sets have illustrated the 

effectiveness of CGE. 

Different from all the aforementioned methods, there is psychological and physiological 

evidence for parts-based representation in the cognitive process of human brain. One of the 

well-known parts-based methods is non-negative matrix factorization (NMF) [12] that tries to 

decompose the original date matrix into the product of two non-negative matrices. In 

particular, due to the non-negative limitation, NMF allows only additive, not subtractive, 

operation, which leads to a parts-based representation of the original data. Concept 

factorization (CF) [14] is a variant of NMF in that each cluster is linearly represented by a few 

data, and each data is linearly represented by the cluster centers. The major advantage of CF 

over NMF is that it can be performed on positive as well as negative data and simultaneously 

kernelized to further improve performance. Until recently, massive other works have been 

done [16, 17, 18, 19, 20, 21, 22] on extensions of NMF.   

However, the coefficient matrix of the above methods is usually dense. This is contrary to 

our understanding that the coefficient matrix is sparse since each sample is represented by a 
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linear combination of only a few concepts. Inspired by biological visual systems, sparse 

coding (SC) is recently proposed for data representation and has been widely applied in many 

fields [23, 24, 25, 26, 27]. Traditional SC algorithm, however, fails to take consideration of the 

geometrical structure information, which can significantly improve the discriminant ability in 

real-world applications [16, 17, 28, 29]. Consequently, a variety of extensions of SC have been 

developed to explore the geometrical structure of the data by adding some constraints. Wang 

et al. [30] proposed a novel technique, called locality-constrained linear coding (LLC), for 

image representation and classification. LLC preserves the local geometric structure in feature 

coding process. Mairalet et al. [31] developed simultaneous sparse coding as a framework 

where groups of similar signals are jointly decomposed by adding group sparsity 

regularization term. Gao et al. [32] presented a laplacian sparse coding (LSC) framework to 

solve the data classification and tagging problems. LSC incorporates the laplacian 

regularization into the mode of SC to preserve the consistence of similar local features. Similar 

to LSC, Zhang et al. [33] proposed a graph regularization sparse coding (GSC) approach for 

image representation. GSC captures the intrinsic manifold structure with resort to laplacian 

graph regularization. Experimental results on image databases have shown the effectiveness of 

GSC. However, one evident drawback of all the aforementioned SC methods is 

computationally expensive to optimize their models. To overcome this limitation, Cai et al. 

[34] proposed a very efficient algorithm, namely sparse concept coding (SCC), for visual 

analysis. One of the major advantages of SCC is very efficient because it only solves a sparse 

eigenvalue problem and two regression problems. For each sample, SCC seeks a sparse 

representation of basis vectors that are embedded the semantic structure information of the 

data. 

Unfortunately, SCC is completely unsupervised without regard to label information. Some 

previous research efforts reveal that the simultaneous use of the labeled data and unlabeled 

data can further improve performance in clustering [35, 36]. Thus, we propose a novel 

semi-supervised learning algorithm, called constrained sparse concept coding (CSCC), for 

data representation. CSCC considers limited label information and the intrinsic manifold 

structure of data, simultaneously. Our empirical study on benchmark data sets shows the 

promising results of our proposed algorithm. The contributions of this paper are as follows: 

(1) Our proposed CSCC preserves some merits of SCC. For example, it exploits the manifold 

structure of the data, and simultaneously only solves a sparse eigenvalue problem and two 

regression problems. Therefore, CSCC is also computationally efficient in comparison with 

other sparse coding methods. 

(2) Compared with SCC, CSCC is a semi-supervised learning algorithm, and thus considers 

limited label information as additional hard constraints. Moreover, CSCC incorporates the 

label information into graph embedding in a parameter-free manner. As a result, CSCC not 

only respects the intrinsic manifold structure of the data, but also takes advantage of the label 

information of the labeled data.  

(3) We also propose another algorithm, called kernel constrained sparse concept coding 

(KCSCC), based on our proposed CSCC. With the kernel trick, nonlinear relationships among 

data are transformed into linear relationships in the high-dimensional kernel space. Therefore, 

we may obtain more effective performance in most cases. 

The remainder of this paper is organized as follows: Section 2 gives a brief review of the 

related work. Section 3 introduces our proposed algorithms. Section 4 provides the 

experimental results to demonstrate the effectiveness of the proposed algorithms. Finally, we 

provide some concluding remarks and suggestions for future work in Section 5. 
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2. Related Work 

In the past few years, sparse coding is proposed based on matrix factorization for data 

representation, which aims to seek a sparse linear combination of basis vectors for each 

sample. Therefore, the model of SC can be defined based on matrix factorization model by 

imposing sparse constraints on representation coefficient.  

Given a sample set
1[ , , ] m n

nX x x
  , where ix

 
stands for a sample. Let 

1[ , , ] m k

kU u u
   be the basis matrix, where iu  can be regarded as a basis in the new 

representation space. Let 
1[ , , ] k n

nA a a
   

be the coefficient matrix, where ia  
denotes the 

representation coefficient of ix . Thus, the objective function of SC can be formally expressed 

as: 

                        
2

0,
min

FU A
X UA A                                            (1) 

where 
0

A  denotes the ℓ0-norm and enforces the sparsity on A, and   is a regularization 

parameter. 

Unfortunately, ℓ0-norm minimization problem is not convex. Therefore, finding the 

sparsest solution of Eq. (2) is a NP-hard problem and computationally expensive. Recent 

studies have shown that if the solution is sparse enough, the sparsest solution of ℓ1-norm 

minimization problem is equal to the solution of ℓ0-norm minimization problem [37, 38]. 

Thus, an alternative formulation for Eq. (1) is to replace ℓ0-norm regularization by ℓ1-norm 

regularization to enforce sparsity constraints: 
2

1,
min

FU A
X UA A                                            (2) 

where 
1

A
 
denotes ℓ1-norm of the coefficient matrix A. Here, we can employ standard linear 

programming methods to solve the ℓ1-norm minimization problem in Eq. (2). 

3. Our Proposed Methods 

3.1 Matrix Factorization  

Generally, factorization of matrices may be non-unique, and hence varieties of matrix 

factorization methods have been developed by imposing different constraints. Specifically, 

given a data set 
1[ , , ] m n

nX x x
  , matrix factorization method tries to seek two matrices 

m k
U

  and k n
A

  satisfying: 

X UA  

where U denotes the basis vectors and A is the coefficient matrix of the samples under the basis 

vectors U. Thus, the objective function of matrix factorization can be formalized as:  
2

,
min

FU A
X UA                                                          (3) 

where 
2

F
 denotes the Frobenius norm of a matrix. 

The models of various matrix factorization methods, such as PCA, LDA, Graph Embedding, 

NMF, CF, and SC can be constructed by adding different constraints on Eq. (3) based on 

different purposes. In this way, we can impose some constraints on Eq. (3) that the basis 

vectors U should be embedded the semantic structure of the data, and simultaneously the 
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representation coefficient A should be sparse. In the next subsection, we first introduce the 

CSCC algorithm in detail. 

3.2 CSCC algorithm 

CSCC is a three-step algorithm for data representation. The first step is concept extraction. 

CSCC takes the label information as additional constraints into graph embedding. Therefore, 

the low dimensional concepts exploit both limited label information and the manifold structure 

information. The second step is basis learning. CSCC aims to learn a basis that can best fit the 

concepts. As a result, the basis are encoded the semantic structure of the original data. The 

final step is sparse representation learning. We can employ LARs [39] algorithm to learn a 

sparse representation for each data.  

3.2.1 Concept extraction 

Given a data set
1[ , , ] m n

nX x x
 , an adjacency graph { , }G X W  

can be constructed 

with data set X, where W denotes a weighted matrix. The elements of the weighted matrix W 

can be usually defined as: 

ij

if N ( ) or N ( )

otherwise

1

0

i p j j p i
x x x x

W
 

 


 

where N ( ) 
p j

x is the set of p nearest neighbors of 
j

x , L=D-W is the Laplacian matrix, D is a 

diagonal matrix and ii ijj
D W . Let

 1[ , , ]T

ny y y  be the map from the graph to the 

real line. According to the reference [13], we will introduce how to incorporate label 

information of labeled data into graph embedding. 

Assume that the first l samples 1, , lx x  belong to c classes as labeled set and the rest n-l 

samples 1, ,l nx x  are unlabeled. We first construct an indicator matrix l c
M

  where 

1ijm 
 
if ix  is labeled with the jth class; 0ijm 

 
otherwise. Once obtaining the indicator 

matrix M, we define the label constraint matrix ( )n n l c
S

   as follows: 

0

0 n

l

l

c
S

M

I 

 
  
                                            

            (4) 

where 
n lI 

 is a ( ) ( )n l n l    identity matrix. For example, given n samples among which 

1x  is from the first class, 2x , 3x  and 4x
 
are from the second class, 5x  and 6x  are from the third 

class, and the rest n-6 samples are unlabeled. Thus, the label constraint matrix S can be defined: 

 

  

6

1 0 0 0

0 1 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 n

S

I 

 
 
 
 
 

  
 
 
 
 
 
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where 
6nI 

 denotes a ( 6) ( 6)n n    identity matrix. Note that concept extraction can map 

each image ix  to iy  from the original feature space to the new concept space. To take 

advantage of limited label information, we can impose the label constraints by introducing an 

auxiliary matrix z: 

y Sz                                                             (5) 
 

From the Eq. (5), it can be found that if ix  
and 

jx  share the same label, then 
i jy y . Thus, 

we have: 

2

, 1

( )
n

T T T

i j ij

i j

y y W y Ly z S LSz


    

And 
T T Ty Dy z S DSz  

Thus, the minimization problem reduces to: 

 max  z

. . z 1

T T

T T

S LSz

s t S DSz 
                                                       (6) 

 

We can obtain the optimal vector z of Eq. (6) by solving the following generalized eigenvalue 

problem:  
T TS LSz S DSz                                                      (7) 

 

Let 1, ][ , dzZ z , iz ’s are the eigenvectors of the generalized eigenvalue problem in Eq. 

(7) corresponding to the smallest eigenvalue. After we obtain z, the y can be derived by Eq. (5). 

Let 1, ][ , dyY y , each row of Y is called a “concept” which embeds the semantic structure 

information for each sample. If there is no labeled data, we can obtain nS I . In this case, the 

CSCC method reduces to SCC method.  

3.2.2 Basis learning 

Considering the label information and the manifold structure at the same time, we aim to find 

a basis U that can best fit Y. That is to say, the basis U needs to satisfy
TX U Y . 

Unfortunately, the system is under-determined, such U does not exist. A feasible way to solve 

this problem is to impose a penalty on the norm of U as follows: 
 

2 2
min T

U
Y X U U 

                                            

  (8) 

where   is the nonnegative constant parameter and 
2

U can avoid over-fitting. In 

statistical learning, the model in Eq. (8) is called Ridge Regression problem [41]. 

By taking the derivative of Eq. (8) with respect to U and setting it to zero, the optimal 

solution *U  of Eq. (8) can be expressed as follows: 
 

   
* 1( )TU XX I XY                                                  (9) 

 

Actually, the dimensionality of the images is so high that it is extremely time-consuming to 

solve 
1( )TXX I  . Fortunately, some iterative algorithms, such as LSQR [40], are used to 

directly find the solution of the regression problem in Eq. (8). 
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3.2.3 Sparse Representation Learning 

Suppose that ia  and ix  denote the ith column vector of A and X, respectively. Once we obtain 

the basis U, the coefficient ia  of the sample ix  can be solved through the following 

minimization problem: 
2

min
i

i i i
a

x Ua a                                                   (10) 

where ia  indicates the ℓ1-norm of ia  and 0   is a constant parameter. The ℓ1-norm 

minimization problem in Eq. (10) is called LASSO in statistical learning [41]. 

Note that the minimization optimization problem in Eq. (10) can be reformulated as 

follows: 
2

min

 . .   

i
i i

a

i

x Ua

s t a 




                                                       (11) 

Fortunately, the Least Angel Regression (LARs) [39] algorithm can be used to solve the 

minimization optimization problem in (11). Thus, we need to set the cardinality (the number of 

non-zero entries) of ia  without the parameter  . In this way, it is easy to control the 

sparseness of representation coefficient ia . 

Algorithm 1: CSCC algorithm  

Input: Given a set of n samples 
1 1[ , , , , ]l l

m

n

nX x x x x

  , 
1{ }l

L iX x  
are labeled and 

1{ }n

U i lX x  are unlabeled. 

Output: The coefficient matrix A. 

1:construct the label constraint matrix S by Eq. (4); 

2:compute the eigenvectors Z of the generalized eigenvalue problem in Eq. (7) 

corresponding to the d smallest eigenvalue and then obtain Y by Eq. (5); 

3:calculate the basis matrix *U  in Eq. (8) by the LSQR algorithm; 

4:compute the coefficient vector ia  in Eq. (11) by LARs algorithm. Thus, the coefficient 

matrix is given by: 1[ , , ]nA a a . 

3.2.4 Computational Complexity of CSCC 

Let q be the average number of non-zero entries in each data, and q m . p denotes the size of 

nearest neighbors, and d represents the dimensionality of the concept. The total computational 

complexity of CSCC algorithm includes three parts:  

(1) In concept extraction phase, we need 
2 2( )O n q n p  operations to calculate the nearest 

neighbor graph and ( 2 )O dnp n  operations to calculate Y. Considering d n , we need 

2 2( )O n q n p  operations to extract the concepts. 

(2) In basis learning phase, the time complexity of calculating the *U  in Eq. (9) with LSQR 

method is ( )O dnq . 
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(3) In sparse representation phase, the time complexity of calculating the coefficient matrix A 

in Eq. (11) with LARs method is
3 2( )O d md . 

In summary, the total complexity of our CSCC algorithm is 
2 2 3 2( )O n q n p d md   . 

From the reference [34], it is easy to check that the total computational cost of CSCC is equal 

to that of SCC. 

3.3 KCSCC algorithm 

To our knowledge, the kernel trick is proposed in SVM to handle classification tasks that 

cannot be linearly separable in the original space. Once the samples in original input space are 

mapped to the high dimensional feature space via kernel trick, the linear algorithms in pattern 

recognition can be employed to handle the data in kernel space. 

Motivated by the fact that kernel methods can deal with the nonlinear structure data, we 

propose a nonlinear extension of our CSCC, namely KCSCC, which seeks a sparse 

representation of nonlinear data. Similar to CSCC, our proposed KCSCC is also a three-step 

method including concept extraction, basis learning and sparse representation learning.  

The concept extraction phase of our proposed KCSCC is the same as that of CSCC. 

Consequently, we only introduce the basis learning and sparse representation learning of 

KCSCC. 

3.3.1 Basis learning  

Suppose that there exists a nonlinear mapping function : n  F  which can map the 

original feature to the kernel feature space: 

( )x x 
                                                           

 

Meanwhile, define the ( , )K    as a Gram matrix, with elements 

( ( ), ( ))ij i jK x x  
                                            

 (12) 

where ( , )    is a positive semi-definite kernel function.  

Similar to basis learning phase of CSCC, KCSCC needs to find a basis U  in high 

dimensional space to satisfy: 

KU Y                                                                   (13) 

where Y stands for embedding results in Eq. (4). In fact, the system in Eq. (13) is also 

under-determined, such U  does not exist. A natural approach is to approximate U  by 

solving: 

( )K I U Y                                                       (14) 

where I denotes an identity matrix and 0   is a parameter. Thus, the optimal solution 
*

U  

of Eq. (14) is expressed as follows: 
*

1( )U K I Y                                                      (15) 

Similarly, it is computational expensive to solve 
1( )K I  . Fortunately, finding the 

solution of Eq. (14) can be converted into solving a regression problem. First, we need to 

define a projective function in the kernel space as follows: 

1

( ) , ( ) ( , )
n

i i

i

f x U x u K x x


                                          (16) 
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It is easy to show that the optimal solution 
*

U  of Eq. (14) is the same as that of the following 

regularized regression problem: 

22

1

min ( ( ) )
n

i i
f

i

f x y f







 
F

                                        (17) 

where ( )if x  and 
iy  are the ith element of ( )f x

 
and Y, respectively; F  is the RKHS 

associated with Mercer kernel   and 


 is the corresponding norm. 

Similarly, the regression problem in Eq. (17) can be directly solved by using the LSQR [40] 

algorithm. 

3.3.2 Sparse representation learning  

Suppose that ia  and ix  are the ith column of A  and X, respectively. After we get the basis 

U , the coefficient ia  of the sample ix
 
can be computed as follows: 

2

min (:, )
i

i ii
a

K x U a a                                             (18) 

where ia  enforces the sparsity on ia , 
1(:, ) [ ( , ), , ( , )]T

i i n iK x K x x K x x  
and 0   is a 

regularization parameter. 

Note that the ℓ1-norm minimization problem in Eq. (18) can be reformulated as: 
2

min (:, )

     . .   

i

ii
a

i

K x U a

s t a 





                                                  (19) 

Similarly, we can employ LARs [39] algorithm to directly solve the Eq. (19). Therefore, we 

need to specify the cardinality of ia  without the parameter  . 

 

Algorithm 2: KCSCC algorithm 

Input: Given a set of n samples 
1 1[ , , , , ]l l

m

n

nX x x x x

  , 
1{ }l

L iX x  
are labeled and 

1{ }n

U i lX x   
are unlabeled. 

Output: The coefficient matrix A . 

1:construct the label constraint matrix S by Eq. (4); 

2:compute the eigenvectors Z of the generalized eigenvalue problem in Eq. (7) 

corresponding to the d smallest eigenvalues and then obtain Y by Eq. (5); 

3:map the original data to the kernel feature space by Eq. (16), and then compute the basis 

vectors 
*

U  in Eq. (17) by the LSQR algorithm; 

4:compute the representation coefficient ia  in Eq. (19) by LARs algorithm. Thus, the 

coefficient matrix is given by: 1[ , , ]nA a a . 

3.3.3 Computational complexity of KCSCC 

Similar to CSCC, the consuming time of the concept extraction phase is 
2 2( )O n q n p  in our 

proposed KCSCC. 
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In basis learning phase, we need 
2( )O mn  operations to map the original data to the 

kernelspace in Eq. (12). In addition, we also need 
3 2( )O n n d  to solve the basis vectors by 

using the LSQR algorithm. Considering d n , the total complexity of this phase is 
2 3( )O mn n . 

In sparse representation learning phase, we need 
2( )O mn  operations to map the original 

data to the kernel space. Besides, we need 
3 2( )O d md  operations to obtain the coefficient 

matrix A  by LARs algorithm. This total complexity of sparse representation learning can be 

written as 
2 3( )O mn d . 

In summary, the total complexity of our proposed KCSCC is 
2 2 3 2( )O n q n p n mn   . 

4. Experimental Classification Results and Analysis 

Recent studies have shown that matrix factorization methods are very powerful in clustering 

tasks. We carry out several experiments to evaluate the performance of our proposed 

algorithms on MNIST, PIE and Yale image databases. In our experiments, the two evaluation 

metrics of the clustering involve accuracy (AC) and normalized mutual information (NMI). 

The detail definitions of AC and NMI are found in [14].  

4.1 Performance Evaluation and Comparisons 

In this subsection, we will systematically conduct the evaluations on some image datasets and 

compare the performances of CSCC and KCSCC with some other algorithms such as K-means, 

CF, NMF, PCA and SCC.  

In these experiments, we randomly choose ( 3,  4, ,10)K  categories from the image data 

sets for clustering. For our proposed semi-supervised algorithm (CSCC and KCSCC), we 

randomly pick up some date samples for each subject to provide the available label 

information, and other data samples are unlabeled. For each given cluster number K, the 

experiment process is repeated 10 times and the average performance is recorded as the final 

result. 

4.1.1 Experiments on MNIST handwritten database 

The MNIST handwritten database includes a training set of 60 000 examples, and a test set of 

10 000 examples. In this experiment, 500 samples are selected for clustering. These digit 

images have been normalized to 28×28 gray scale images. Fig. 1 shows some handwritten 

samples from MNIST database.  

 

 
Fig. 1. Images from the MNIST database 

 

In this experiment, we randomly pick up 50 samples for each subject and randomly select 

20% from these samples as available label information. The rest digit images are left as 

unlabeled data. This is, for each subject, the labeled data are 10 images and the rest unlabeled 
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data are 40 images, which are mixed as a whole for clustering. The experimental results are 

summarized in Table 1. It is noticeable that our proposed methods consistently outperform 

other competitors. As shown in Table 1, compared with the best algorithm, i.e., SCC, CSCC 

and KCSCC achieve 6.6 % and 9% improvement in AC, respectively. For NMI, CSCC and 

KCSCC algorithms achieve 7.3% and 7.6% improvement, respectively. 
 

Table 1. Clustering performance on MNIST database 

(a)AC 

K K-means CF NMF PCA SCC CSCC KCSCC 

3 0.863 0.631 0.721 0.833 0.752 0.867 0.869 

4 0.795 0.685 0.661 0.724 0.672 0.862 0.871 

5 0.714 0.600 0.653 0.701 0.672 0.735 0.744 

6 0.674 0.595 0.644 0.649 0.671 0.709 0.733 

7 0.602 0.574 0.583 0.584 0.629 0.674 0.679 

8 0.593 0.575 0.564 0.583 0.651 0.704 0.729 

9 0.579 0.579 0.559 0.563 0.618 0.729 0.716 

10 0.540 0.654 0.508 0.574 0.646 0.660 0.690 

avg 0.670 0.612 0.612 0.651 0.664 0.743 0.754 

(b)NMI 

K K-means CF NMF PCA SCC CSCC KCSCC 

3 0.661 0.373 0.479 0.650 0.555 0.708 0.709 

4 0.569 0.388 0.416 0.518 0.453 0.687 0.701 

5 0.597 0.529 0.516 0.573 0.565 0.621 0.632 

6 0.579 0.512 0.543 0.571 0.598 0.644 0.618 

7 0.535 0.489 0.500 0.519 0.580 0.601 0.613 

8 0.546 0.508 0.502 0.512 0.606 0.647 0.657 

9 0.557 0.526 0.501 0.543 0.593 0.631 0.620 

10 0.535 0.563 0.525 0.549 0.614 0.616 0.624 

avg 0.572 0.486 0.498 0.554 0.571 0.644 0.647 

4.1.2 Experiments on PIE face database 

The PIE face database consists of 41,368 images of 68 individuals. The face images were 

captured by 13 synchronized cameras and 21 flashes under different pose, illumination and 

expression. In this experiment, we choose the frontal pose (C27) with varying lighting and 

illumination which leave us about 46 images per subject. The gray face images are normalized 

to 32×32 pixels. Some sample images from the PIE database are shown in Fig. 2. 

 

 
Fig. 2. Face examples from the PIE database 
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In this experiment, we randomly choose 46 samples per subject for clustering. For each 

category, we randomly pick up 9 face images to provide label information as labeled set, the 

rest images without label information as unlabeled set. Then the labeled set and unlabeled set 

are mixed for clustering. Shown in Table 2 are the comparison results of all matrix 

factorization methods. As we can see, KCSCC achieves the highest average AC 68.7% and the 

highest average NMI 67.5%. The average AC of CSCC achieves nearly 3.7% improvement 

and the average NMI achieves 6.2% improvement over the SCC, respectively. Compared to 

the CSCC, the average AC of KCSCC is better 1.8% and the average NMI is slightly better 

1.1%.  
Table 2 Clustering performance on PIE database 

(a)AC 

K K-means CF NMF PCA SCC CSCC KCSCC 

3 0.511 0.556 0.530 0.500 0.733 0.784 0.761 

4 0.372 0.438 0.490 0.398 0.643 0.678 0.728 

5 0.473 0.460 0.503 0.427 0.706 0.714 0.736 

6 0.355 0.364 0.418 0.353 0.603 0.666 0.725 

7 0.269 0.319 0.444 0.321 0.644 0.678 0.702 

8 0.271 0.264 0.397 0.273 0.599 0.631 0.604 

9 0.278 0.279 0.418 0.227 0.573 0.616 0.663 

10 0.232 0.240 0.357 0.245 0.553 0.581 0.576 

avg 0.345 0.365 0.445 0.343 0.632 0.669 0.687 

(b) NMI 

K K-means CF NMF PCA SCC CSCC KCSCC 

3 0.189 0.299 0.212 0.206 0.533 0.634 0.653 

4 0.121 0.182 0.246 0.142 0.519 0.594 0.651 

5 0.360 0.302 0.391 0.332 0.685 0.691 0.749 

6 0.192 0.199 0.269 0.203 0.548 0.677 0.666 

7 0.200 0.192 0.374 0.236 0.671 0.687 0.707 

8 0.194 0.144 0.353 0.197 0.632 0.666 0.640 

9 0.218 0.185 0.389 0.178 0.619 0.699 0.707 

10 0.186 0.144 0.354 0.200 0.609 0.662 0.627 

avg 0.208 0.206 0.324 0.212 0.602 0.664 0.675 

4.1.3 Experiments on Yale database 

The Yale face database contains 15 subjects each providing 11 different images, thus 165 face 

images in total. For some subjects, the face images were taken under various lighting 

conditions and facial expressions. All face images have been normalized to 32×32 pixels. Fig. 

3 shows some face images of two subjects from the Yale database. 
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   Fig. 3. Face examples from the Yale database 

 

In this experiment, we randomly pick up the 20% images as labeled data, the rest images as 

unlabeled data for each category. In other words, since each category includes 11 images, we 

randomly choose 2 images to provide the label information as additional constraints, and 

consider the rest 9 images as the unlabeled data. Finally, the labeled data and unlabeled data 

are mixed as a whole for clustering. The experimental results are summarized in Table 3. In 

general, our proposed methods are always better than other algorithms on Yale database. 

Compared with the SCC algorithm, CSCC and KCSCC algorithms achieve 3.9% and 4.5% 

improvement in AC, respectively. For NMI, CSCC and KCSCC achieve 4.2% and 5.6% 

improvement, respectively. Compared with the best NMF algorithm, CSCC and KCSCC 

algorithms achieve 2.7% and 3.3% improvement in AC, respectively. For NMI, CSCC and 

KCSCC algorithm achieve 3.5% and 4.9% improvement, respectively. 

 
Table 3. Clustering performance on Yale database 

(a)AC 

K K-means CF NMF PCA SCC CSCC KCSCC 

3 0.654 0.672 0.715 0.667 0.739 0.776 0.779 

4 0.522 0.509 0.622 0.609 0.595 0.672 0.663 

5 0.436 0.418 0.529 0.524 0.530 0.537 0.556 

6 0.472 0.424 0.463 0.460 0.474 0.488 0.506 

7 0.467 0.431 0.490 0.471 0.483 0.499 0.519 

8 0.443 0.404 0.479 0.468 0.450 0.507 0.498 

9 0.440 0.420 0.460 0.461 0.434 0.479 0.499 

10 0.427 0.356 0.449 0.457 0.410 0.465 0.455 

avg 0.483 0.454 0.526 0.515 0.514 0.553 0.559 

(b) NMI 

K K-means CF NMF PCA SCC CSCC KCSCC 

3 0.435 0.449 0.486 0.471 0.507 0.560 0.573 

4 0.341 0.313 0.430 0.422 0.418 0.492 0.475 

5 0.302 0.263 0.360 0.332 0.354 0.384 0.392 

6 0.371 0.288 0.354 0.351 0.373 0.385 0.400 

7 0.401 0.338 0.394 0.393 0.405 0.414 0.444 

8 0.405 0.340 0.416 0.401 0.384 0.442 0.454 

9 0.426 0.384 0.434 0.434 0.418 0.459 0.492 

10 0.419 0.343 0.422 0.452 0.377 0.442 0.458 

avg 0.388 0.340 0.412 0.407 0.405 0.447 0.461 

4.2 Parameters Discussion 

In our experiments, the size of neighborhood p  and the regularization parameter   are 

empirically set to 5 and 0.1, respectively. We implement our proposed KCSCC algorithm with 

degree 2 polynomial kernel. Suppose that the cardinality denotes the non-zero number of 
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representation coefficient and is empirically specified as half of the number of the basis. In 

addition, the number of basis vectors is empirically set as the number of clusters. 

Fig. 4 shows how the performances of our proposed algorithms vary with the cardinality 

parameter on all image databases. In each experiment, we simply use the first 10 categories 

samples for clustering. Since the number of basis vectors is empirically set to the number of 

clusters, there are 10 basis vectors in new concept space. In other words, we can use a 10 

dimension vector to represent each data on concept space, where the vector is generally called 

representation coefficient. From Fig. 4 we can see that each high dimensional data, such as 

1024 dimensionality, can be represented by the coefficient with only 3 non-zero entries in new 

concept space. Therefore, it indicates that the representation for each image is very sparse in 

concept space. This observation suggests that we can use a linear combination of only a few 

concepts to represent each image. This is consistent with our common knowledge since most 

of the images contain only a few concepts. 

 

 
      (a) MNIST                                                               (b) MNIST  

 
  (c) PIE                                                                      (d)PIE 

 
 (e)Yale                                                                    (f)Yale 

 

Fig. 4. The performance with varied the cardinality 

 

Fig. 5 shows the performances of our proposed algorithms with the increasing of the 

number of labeled data. K-means, CF, NMF, PCA and SCC are unsupervised learning 
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algorithms without regard to label information of the data. CSCC and KCSCC, however, are 

semi-supervised learning algorithms, and thus the performances have a close relation to the 

number of the labeled data. In each experiment, we randomly choose 10 categories from image 

database and randomly pick up different ratios of data samples per class as labeled data for 

clustering. Then 10 independent experiments are taken to calculate the average performance 

and the results are shown in Fig. 5. We carry out the experiments with the ratio of the labeled 

data ranging from 10% to 50%. As can be seen in Fig. 5, CSCC and KCSCC outperform other 

unsupervised learning algorithms. Moreover, it can be found that the performances of our 

semi-supervised learning algorithms, such as CSCC and KCSCC, become better as the 

number of labeled data increases. It implies that label information plays an important role for 

image representation. This is also consistent with our understanding for the role of label 

information in semi-supervised learning algorithm. 

 

 
     (a) MNIST                                                              (b) MNIST 

 
 (c) PIE                                                                      (d)PIE 

 
   (e)Yale                                                                       (f)Yale 

 

Fig. 5. The performance with varied the number of labeled data 

 

Fig. 6 displays the results of all comparative algorithms with varied the number of basis 

vectors on three image datasets. For various matrix factorization algorithms, the selection of 

the number of basis vectors is a fundamental topic. Throughout above experiments, the 
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number of basis vectors is empirically set to the number of the clusters. In this experiment, we 

randomly choose 10 categories data from the image database for clustering and repeat the 

experiment process 10 times. Then the average performances of all methods are shown in Fig. 

6. As we can see, when the number of basis vectors ranges from 5 to 250, it is easy to check 

that the performances of CSCC and KCSCC are superior to other matrix factorization 

algorithms on all databases. It can be found that our proposed algorithms achieve the highest 

performance when the number of basis vectors is equal to the number of classes. Besides, we 

can see that the performances of CSCC and KCSCC are relatively stable with varied the 

number of basis vectors. 

 

 
      (a) MNIST                                                               (b) MNIST 

 
  (c) PIE                                                                    (d)PIE 

 
(e) Yale                                                                    (f)Yale 

 

Fig. 6. The performance with varied the number of basis vectors 

 

4.3 Observations 

These experiments on MNIST, PIE and Yale image data sets reveal some interesting points: 

(1) As we can see, SCC is superior to K-means, NMF, CF and PCA on MNIST and PIE 

databases. Unfortunately, the performance of SCC is inferior to NMF and PCA on Yale 
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database. Thus, we can see that SCC cannot achieve the best performance compared with 

NMF and PCA in all data sets. The reason may be that SCC only explores the manifold 

structure of the data.  

(2) CSCC can obtain the better performance than SCC on all image databases. The reason is 

that SCC is completely unsupervised. Our proposed CSCC, however, is a semi-supervised 

learning algorithm, and thus incorporates limited label information into graph embedding. The 

embedding results of CSCC are consistent with the prior knowledge such that the images from 

the same class are merged together and simultaneously preserve the manifold structure 

information of data. The experimental results demonstrate that limited label information, when 

used in conjunction with geometric manifold structure information, can improve the 

performance in clustering.  

(3) Regardless of the database, we can see that the average performance of KCSCC 

consistently outperforms CSCC. The main reason is that KCSCC not only preserves the 

advantages of CSCC, but also can handle the nonlinear structure data via kernel trick. 

Therefore, KCSS provides more discriminative power than other competitors, such as SCC 

and CSCC. 

(4) As we can see, when the minimum for cardinality is 3, our proposed CSCC and KCSCC 

algorithms can maintain the stable performances on three image databases. Therefore, the 

representation coefficient for each image is very sparse in new concept space. It is consistent 

with our understanding that each image can be presented by a linear combination only a few 

concepts. 

5. Conclusion 

In this paper, a novel semi-supervised method, called CSCC, is proposed for image 

representation, which has many advantages over traditional sparse coding techniques. CSCC 

explores the geometric structure information among the original data, and simultaneously 

takes advantage of the limited label information in a parameter-free manner. Subsequently, the 

kernel extension of CSCC, named KCSCC, is proposed to deal with the nonlinear distribution 

data. KCSCC has more discriminative power than its linear method in most cases. Finally, 

similar to SCC, our proposed algorithms only solve an eigenvalue problem and two regression 

problems. In comparison with traditional sparse coding algorithms, CSCC and KCSCC are 

also very efficient. Experimental results demonstrate that our algorithms can provide a better 

representation than state-of-the-art matrix factorization algorithms.  

However, there are still several drawbacks existed in CSCC and KCSCC to be considered in 

the future work. First, our proposed algorithms cannot provide a mechanism for noise 

removing, thus they are not robust methods for image representation. Therefore, we can 

replace the ℓ-2 norm by the ℓ-2,1 norm for noisy data in future work. Second, the number of 

basis vectors and the cardinality play a very important role in improving the performances of 

our proposed algorithms. How to effectively set them is an interesting topic. 
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