• Title/Summary/Keyword: spark test

Search Result 148, Processing Time 0.042 seconds

The Study of Performance Test of Conventional Curve Line for Korean Tilting Train (한국형 틸팅열차 곡선부 성능시험 연구)

  • Lee, Su-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1211_1212
    • /
    • 2009
  • Tilting trains are now an established feature of railway operations throughout the world. For intercity traffic, tilt provides operators with increasing speeds, and therefore enhanced competitiveness, on existing routes where insufficient traffic or a lack of funds precludes the construction of a dedicated new high-speed railway. Appling the tilting train, we can expect 30% of speed up on existing lines, but the stability of the electric current would be low because of tilting the train. Also, the spark between the catenary and pantagraph cause environmental problems such as noise, radio wave malfunction. Therefore, the tilting on pantagraph for the power suppling device is very essential for stable electric power supply.

  • PDF

Characteristics of HC Emissions by Starting Conditions in an SI Engine (가솔린 기관의 시동조건에 따른 HC의 배출특성)

  • 김성수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.1-9
    • /
    • 2004
  • During the SI engine starting up, starting conditions directly contribute to the unburned hydrocarbon emissions in spark ignition engines. The effects of catalyst temperatures and fuel injection skip methods on HC emissions were investigated. The test was conducted on a 1.5 L, 4-cylinder, 16 valve, multipoint-port-fuel-injection gasoline engine. To understand the formation of HC emissions, HC concentration was measured in an exhaust port using a Fast Response Flame ionization Detector (FRFID). The result showed that HC emissions, which were emitted at the cold coolant and catalyst temperature, were generated much higher than those of hot coolant and catalyst temperatures. In additions, fuel injection skips reduced highly HC emissions. It is convinced that optimized fuel injection skip method according to coolant and catalyst temperatures could be applied to reduce HC emissions during the SI engine starts.

A Study on the Characteristics of the Electronic EGR Valve for Gasoline Engine (가솔린엔진용 E-EGR 밸브 특성에 관한 연구)

  • Park, Cheol-Woong;Kim, Chang-Gi
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.127-133
    • /
    • 2008
  • Since the 1960's, exhaust gas recirculation(EGR) has been used effectively in spark ignition(SI) engines to control the exhaust emissions of the oxides of nitrogen(NOx). The most important requirements for the application of EGR systems to conventional SI engines are controllable flow rate and good dynamic response. In order to evaluate the characteristics of the electronic EGR valve, a test bench which is consisted of blower, heater, air flow meter and driving unit for electronic EGR valve was set up to simulate engine operating conditions. During the tests, the valve actuation parameters were controlled and the valve lifts and flow rates were measured to infer the characteristics of EGR valve. The results confirmed the capabilities of mathematical analysis and it seems that the correction for the valve lift and potentiometer output is necessary to achieve precise control of EGR rates.

Study on the prediction of performance and emission of a 4-cylinder 4-stroke cycle spark ignition engine(Second Paper) (4기통 4사이클 터보과급 가솔린 기관의 성능 및 배리조성 예측에 관한 연구(제2보))

  • 유병철;이병해;윤건식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.46-59
    • /
    • 1990
  • The development of the effective computer simulation program which predicts the performances and emissions of the multi-cylinder turbocharged gasoline engine has been described in the first paper. In this paper, the comparison between the predictions and experiments of the transient pressure at each point in the intake and exhaust systems was made to examine the validity and availability of the simulation models adopted. This test was performed for the engines equipped with different turbochargers under various operating conditions. The results of calculation showed good agreements with the experimental data and proved that the simulation program developed can be used for the matching of the turbocharger to the engine.

  • PDF

The Study of Tilting System Combination Test of EMU Tilting Train (전기차량의 틸팅시스템 인터페이스 조합시험에 관한 연구)

  • Lee, Su-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.253-256
    • /
    • 2006
  • Tilting trains are now an established feature of railway operations throughout the world. For intercity traffic, tilt provides operators with increasing speeds, and therefore enhanced competitiveness, on existing routes where insufficient traffic or a lack of funds precludes the construction of a dedicated new high-speed railway. Appling the tilting train, we can expect 30% of speed up on existing lines, but the stability of the electric current would be low because of tilting the train. Also, the spark between the catenary and pantagraph cause environmental problems such as noise, radio wave malfunction. Therefore, the tilting on pantagraph for the power suppling device is very essential for stable electric power supply.

  • PDF

A Study on Characteristics of Knocking in Gasoline Engine through ECU Control (ECU 제어를 통한 가솔린 엔진의 노킹 특성에 관한 연구)

  • Yang, Hyun-Soo;Lim, Ju-Hun;Chun, Dong-Jun
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.3
    • /
    • pp.109-115
    • /
    • 2008
  • A burning principle in gasoline engine is the one of being burned, by which a mixer in air and gasoline enters a combustion chamber and causes a spark in the proper timing. This is formed, by which ECU controls the fuel-injection volume and the fuel-injection timing, and determines the performance of engine. The purpose of this study is to test the characteristics on knocking in gasoline engine with the knocking-sensor equipment and to research into the characteristics in knocking while directly controling the optimal igniting timing and the fuel-injection timing through engine ECU. Given controlling ECU by grasping the characteristics in knocking, which becomes the most problem in the engine tuning market, the tuning in a true sense will be formed in gasoline engine.

Load Transfer on Pulsed Power Discharge Anchors (펄스방전 확공형 앵커의 하중전이에 관한 연구)

  • Kim, Sung-Kyu;Kim, Nak-Kyung;Kim, Jae-Won;Joo, Yong-Sun;Kim, Sun-Ju
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.832-839
    • /
    • 2010
  • The pulse discharge anchor is a method to increase the capacity of anchors using electric discharge geotechnical technologies, which is also known as pulse discharge and electric-spark technologies. The pulse discharge anchor has bulbed bond length that is expanded by high voltage electrokinetic pulse energy. 24 anchors were installed in the weathered soil and sandy clay at the Geotechnical Experimentation Site at Sungkyunkwan University in Suwon, Korea and attached strain gauge at 10 anchors. The numerical predictions by Beam-Column analysis were compared with observed measurements in a field load test.

  • PDF

Effect of methanol-blended fuel properties on the combustion characteristics of a gasoline engine (메탄올 혼합연료가 기관 연소 특성에 미치는 영향)

  • Jo, Haeng-Muk;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3381-3386
    • /
    • 1996
  • The engine performance and combustion characteristics of methanol blended fuel in spark ignition engine were discussed on the basis of experimental investigation. The effects of methanol blending fuel on combustion in cylinder were investigated under various conditions of engine cycle and blending ratio. The results showed that the engine performance was influenced by the methanol blending ratio and the variations of operating conditions of test engine. The increase of fuel temperature brought on the improvement of combustion characteristics such as cylinder pressure, the rate of pressure rise and heat release in an engine. The burning rate of fuel-air mixture, the exhaust emissions and the other characteristics of performance were discussed also.

Idle speed control of car engine using microcontroller (마이크로컨트롤러를 이용한 자동차 엔진의 공회전 속도 제어)

  • 장재호;김병국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.287-291
    • /
    • 1992
  • Recently, electronic engine control system is used in many automotives for high efficiency and low pollution. In order to perform these requirements, fuel injection control, spark timing control, knock control, exhaust gas recirculation control and idle speed control should be implemented. In this paper, idle speed control system using microcontroller is developed, which is compact in hardware, but powerful in software performing efficient control and various compensations for engine condition and environments. If idle speed is low engine operation is not smooth, reversely if high, fuel consumption is increased. Therefore idle speed must be maintained as low as possible within the scope that ensures smooth operation of engine. Also, an engine signal simulator, which generates various signals from engine, is realized for test facility.

  • PDF

The Study of Completion Vehicle Tilting System Test for Conventional Rail Speed-Up (기존선 고속화를 위한 틸팅시스템 완성차 시험연구)

  • Lee, Su-Gil;Han, Seong-Ho;Song, Yong-Soo
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.964-967
    • /
    • 2007
  • Tilting trains are now an established feature of railway operations throughout the world. For intercity traffic, tilt provides operators with increasing speeds, and therefore enhanced competitiveness, on existing routes where insufficient traffic or a lack of funds precludes the construction of a dedicated new high-speed railway. Appling the tilting train, we can expect 30% of speed up on existing lines, but the stability of the electric current would be low because of tilting the train. Also, the spark between the catenary and pantagraph cause environmental problems such as noise, radio wave malfunction. Therefore, the tilting on pantagraph for the power suppling device is very essential for stable electric power supply.

  • PDF