• Title/Summary/Keyword: sorption isotherms

Search Result 111, Processing Time 0.023 seconds

Applicability of Theoretical Adsorption Models for Studies on Adsorption Properties of Adsorbents(1) (흡착제의 흡착특성 규명을 위한 흡착모델의 적용성 평가(1)-흡착등온식을 이용한 평가)

  • Na, Choon-Ki;Han, Moo-Young;Park, Hyun-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.8
    • /
    • pp.606-616
    • /
    • 2011
  • The objectives of this study were to evaluate the applicability of adsorption models for adsorption properties of adsorbents. For this study, adsorption experiment of $NO_3^-$ ion using anion exchange resin has been investigated under adsorption equilibrium and kinetic in bach process. Adsorption equilibrium experiment were carried out that two conditions is change of adsorbate concentration and change of adsorbent weight. Experiment results have been analyzed by adsorption isotherm models, energy models and kinetic models. Under the condition of change of adsorbate concentration was best described by Sips and Redlich-Perterson isotherm models. However case of change of adsorbent weight was described by Langmuir isotherm models. It seems reasonable to assume that isotherm model was dominated by multiple mechanism according to experiment condition.

Characterization of Bottom Ash as an Adsorbent of Lead from Aqueous Solutions

  • Gorme, Joan B.;Maniquiz, Marla C.;Kim, Soon-Seok;Son, Young-Gyu;Kim, Yun-Tae;Kim, Lee-Hyung
    • Environmental Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.207-213
    • /
    • 2010
  • This study investigated the potential of using bottom ash to be used as an adsorbent for the removal of lead (Pb) from aqueous solutions. The physical and chemical characteristics of bottom ash were determined, with a series of leaching and adsorption experiments performed to evaluate the suitability of bottom ash as an adsorbent material. Trace elements were present, such as silicon and aluminum, indicating that the material had a good adsorption capacity. All heavy metals leached during the Korea standard leaching test (KSLT) passed the regulatory limits for safe disposal, while batch adsorption experiments showed that bottom ash was capable of adsorbing Pb (experimental $q_e$ = 0.05 mg/g), wherein the adsorption rate increased with decreasing particle size. The adsorption data were then fitted to kinetic models, including Lagergren first-order and Pseudo-second order, as well as the Elovich equation, and isotherm models, including the Langmuir, Freundlich and Dubinin-Radushkevich isotherms. The results showed that pseudo-second order kinetics was the most suitable model for describing the kinetic adsorption, while the Freundlich isotherm best represented the equilibrium sorption onto bottom ash. The maximum sorption capacity and energy of adsorption of bottom ash were 0.315 mg/g and 7.01 KJ/mol, respectively.

Arsenic Contamination of Groundwater a Grave Concern: Novel Clay-based Materials for Decontamination of Arsenic (V)

  • Amrita Dwivedi;Diwakar Tiwari;Seung Mok Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.199-205
    • /
    • 2023
  • Arsenic is a highly toxic element, and its contamination is widespread around the world. The natural materials with high selectivity and efficiency toward pollutants are important in wastewater treatment technology. In this study, the mesoporous synthetic hectorite was synthesized by facile hydrothermal crystallization of gels comprising silica, magnesium hydroxide, and lithium fluoride. Additionally, the naturally available clay was modified using zirconium at room temperature. Both synthetic and modified natural clays were employed in the removal of arsenate from aquatic environments. The materials were fully characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform-infrared (FT-IR) analyses. The synthesized materials were used to remove arsenic (V) under varied physicochemical conditions. Both materials, i.e., Zr-bentonite and Zr-hectorite, showed high percentage removal of arsenic (V) at lower pH, and the efficiency decreased in an alkaline medium. The equilibrium-state sorption data agrees well with the Langmuir and Freundlich adsorption isotherms, and the maximum sorption capacity is found to be 4.608 and 2.207 mg/g for Zr-bentonite and Zr-hectorite, respectively. The kinetic data fits well with the pseudo-second order kinetic model. Furthermore, the effect of the background electrolytes study indicated that arsenic (V) is specifically sorbed at the surface of these two nanocomposites. This study demonstrated that zirconium intercalated synthetic hectorite as well as zirconium modified natural clays are effective and efficient materials for the selective removal of arsenic (V) from aqueous medium.

Effect of the Number of Passes through Grinder on the Pore Characteristics of Nanofibrillated Cellulose Mat (그라인딩 처리 횟수에 따른 나노피브릴화 셀룰로오스 매트의 공극 특성)

  • Sim, Kyujeong;Ryu, Jaeho;Youn, Hye Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.1
    • /
    • pp.35-41
    • /
    • 2013
  • In this study, we investigated the effect of the number of passes through agrinder on the pore characteristics of nanofibrillated cellulose (NFC) mat. The beaten pulp suspension was used to make NFC suspension using a grinder. To evaluate the pore characteristics of a NFC mat, the surface morphology of the dried NFC mat was observed with FE-SEM and the specific surface area was analyzed with BET nitrogen gas adsorption. The structure of NFC mat was changed with the different number of passes and drying methods. The specific surface area of NFC mat increased with the increase in the number of passes. The 20-passed NFC mat had 20 times larger specific surface area ($141m^2/g$) compared to the 0-passed NFC mat. The specific surface area was strongly correlated with the average pore size in NFC mat. The average pore diameter in NFC mat was calculated from the gas sorption isotherms using BJH model. The value was 13 - 15 nm, indicating that the NFC mat had mesoporous structure.

Minimum Specific Airflow Rate Requirements for Natural Air Drying of Rough Rice in Korea (벼 상온통풍건조의 최소풍량비에 관한 연구)

  • 금동혁;박선태
    • Journal of Biosystems Engineering
    • /
    • v.21 no.1
    • /
    • pp.60-71
    • /
    • 1996
  • The purposes of this study were to develop a simulation model and to determine minimum specific airflow rate requirements for natural air drying of rough rice in Korea. A simulation model was developed considering energy and mass balances within grain bed, drying and rewetting rates, and hysterisis effect between sorption and desorption isotherms. As the results of validation test, the moisture contents predicted by the model agreed very well with the actual data. The criteria for determining minimum specific airflow rate requirements was that the top loom layer in the bin be dried to a moisture content below 16 percent wet basis with less than 0.5% drymatter decomposition. The minimum specific airflow rate requirements in 13 locations of Korea were presented based on the worst one among the past 7 to 13-year weather data. These requirements were also presented for all the combinations of three harvest dates and four harvest moisture contents. Specific airflow rate requirements seemed to be half by each 2 percent reduction in moisture content from 24 percent. As harvest date was delayed by 10 days from October 1, these requirements were reduced by about 20 to 40 percent.

  • PDF

Prediction of chloride ingress into saturated concrete on the basis of a multi-species model by numerical calculations

  • Nguyen, T.Q.;Baroghel-Bouny, V.;Dangla, P.
    • Computers and Concrete
    • /
    • v.3 no.6
    • /
    • pp.401-422
    • /
    • 2006
  • A multi-species model based on the Nernst-Planck equation has been developed by using a finite volume method. The model makes it possible to simulate transport due to an electrical field or by diffusion and to predict chloride penetration through water saturated concrete. The model is used in this paper to assess and analyse chloride diffusion coefficients and chloride binding isotherms. The experimental assessment of the effective chloride diffusion coefficient consists in measuring the chloride penetration depth by using a colorimetric method. The effective diffusion coefficient determined numerically allows to correctly reproduce the chloride penetration depth measured experimentally. Then, a new approach for the determination of chloride binding, based on non-steady state diffusion tests, is proposed. The binding isotherm is identified by a numerical inverse method from a single experimental total chloride concentration profile obtained at a given exposure time and from Freundlich's formula. In order to determine the initial pore solution composition (required as initial conditions for the model), the method of Taylor that describes the release of alkalis from cement and alkali sorption by the hydration products is used here. Finally, with these input data, prediction of total and water-soluble chloride concentration profiles has been performed. The method is validated by comparing the results of numerical simulations to experimental results obtained on various types of concretes and under different exposure conditions.

Evaluation of Metal Biosorption Efficiency of Laboratory-grown Microcystis under Various Environmental Conditions

  • Pradhan, Subhashree;Singh, Sarita;Rai, Lal Chand;Parker, Dorothy L.
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.53-60
    • /
    • 1998
  • This study examines the effect of pH, temperature, metal ion concentration and culture density on metal biosorption by the nuisance cyanobacterium Microcystis aeruginosa. Ni biosorption was higher at pH 9.2 than at neutral and acidic pH. In contrast the biosorption of Cu and Zn was maximum at pH 7.0. However, biosorption of Zn was difficult to measure at pH values 9.2 and 10.5, owing to the formation of insoluble complexes. All the test metals (Cu, Zn, and Ni) showed maximum biosorption rate at low culture densities of 40 mg dry wt $1^{-1}$. The biosorption of Cu, Zn, and Ni was maximum at $40^{\circ}C$. However, no worthwhile difference in Zn and Ni sorption was noticed at 4 and $29^{\circ}C$ as compared to $40^{\circ}C$. Of these three metals used Microcystis showed a greater binding capacity ($K_{f}$ value=0.84, Freundlich adsorbent capacity) and accelerated biosorption rate for Cu under various environmental conditions. Fitness of mathematical models on metal biosorption by Microcystis confirmed that the biological materials behave in the same way as physical materials. These results suggest that before using a biosorbent for metal recovery, the environmental requirements of the biosorbent must be ascertained.

  • PDF

Gas Separation of Pyrolyzed Polymeric Membranes: Effect of Polymer Precursor and Pyrolysis Conditions

  • Jung, Chul-Ho;Kim, Gun-Wook;Han, Sang-Hoon;Lee, Young-Moo
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.565-574
    • /
    • 2007
  • In this study, five representative, commercially available polymers, Ultem 1000 polyetherimide, Kapton polyimide, phenolic resin, polyacrylonitrile and cellulose acetate, were used to prepare pyrolyzed polymer membranes coated on a porous {\alpha}-alumina$ tube via inert pyrolysis for gas separation. Pyrolysis conditions (i.e., final temperature and thermal dwell time) of each polymer were determined using a thermogravimetric method coupled with real-time mass spectroscopy. The surface area and pore size distribution of the pyrolyzed materials derived from the polymers were estimated from the nitrogen adsorption/desorption isotherms. Pyrolyzed membranes from polymer precursors exhibited type I sorption behavior except cellulose acetate (type IV). The gas permeation of the carbon/{\alpha}-alumina$ tubular membranes was characterized using four gases: helium, carbon dioxide, oxygen and nitrogen. The polyetherimide, polyimide, and phenolic resin pyrolyzed polymer membranes showed typical molecular sieving gas permeation behavior, while membranes from polyacrylonitrile and cellulose acetate exhibited intermediate behavior between Knudsen diffusion and molecular sieving. Pyrolyzed membranes with molecular sieving behavior (e.g., polyetherimide, polyimide, and phenolic resin) had a $CO_2/N_2$ selectivity of greater than 15; however, the membranes from polyacrylonitrile and cellulose acetate with intermediate gas transport behavior had a selectivity slightly greater than unity due to their large pore size.

Role of Activated Carbon Modified by H3PO4 and K2CO3 From Natural Adsorbent for Removal of Pb (II) From Aqueous Solutions

  • Manoochehri, Mahboobeh;Khorsand, Ameneh;Hashemi, Elham
    • Carbon letters
    • /
    • v.13 no.3
    • /
    • pp.167-172
    • /
    • 2012
  • Most heavy metals are well-known toxic and carcinogenic agents and when discharged into wastewater represent a serious threat to the human population and the fauna and flora of the receiving water bodies. The present study aims to develop a procedure for Pb (II) removal. This procedure is based on using powdered activated carbon, which was prepared from walnut shells that were generated as plant wastes and modified with potassium carbonate and phosphoric acid as chemical agents. The main parameters, such as effect of pH, effect of sorbent dosage, Pb (II) concentrations, and various contact times influence the sorption process. The experimental results were analyzed by using Langmuir, Freundlich, Tempkin, and Dubinin-Radushkevich adsorption models. The kinetic study of Pb (II) on activated carbon from walnut shells was performed based on pseudo- first order and pseudo- second order equations. The data indicate that the adsorption kinetics follow the pseudo- second order rate. The procedure was successfully applied for Pb (II) removal from aqueous solutions.

Role of modified activated carbon by H3PO4 or K2CO3 from natural adsorbent for removal of Pb(II) from aqueous solutions

  • Manoochehri, Mahboobeh;Khorsand, Ameneh;Hashemi, Elham
    • Carbon letters
    • /
    • v.13 no.2
    • /
    • pp.115-120
    • /
    • 2012
  • Most heavy metals are well-known toxic and carcinogenic agents and when discharged into wastewater represent a serious threat to the human population and the fauna and flora of the receiving water bodies. The present study aims to develop a procedure for Pb(II) removal. The study was based on using powdered activated carbon, which was prepared from walnut shells generated as plant wastes and modified with potassium carbonate or phosphoric acid as chemical agents. The main parameters, such as effect of pH, effect of sorbent dosage, Pb(II) concentrations, and various contact times influence the sorption process. The experimental results were analyzed by using Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich adsorption models. The kinetic study of Pb(II) on activated carbon from walnut shells was performed based on pseudo-first order and pseudo-second order equations. The data indicate that the adsorption kinetics follow the pseudo-second order rate. The procedure was successfully applied for Pb(II) removal from aqueous solutions.