DOI QR코드

DOI QR Code

Role of modified activated carbon by H3PO4 or K2CO3 from natural adsorbent for removal of Pb(II) from aqueous solutions

  • Manoochehri, Mahboobeh (Department of Chemistry, Central Tehran Branch, Islamic Azad University) ;
  • Khorsand, Ameneh (Member of Young Researchers Club, Islamic Azad University) ;
  • Hashemi, Elham (Department of Chemistry, Central Tehran Branch, Islamic Azad University)
  • Received : 2012.01.06
  • Accepted : 2012.03.02
  • Published : 2012.04.30

Abstract

Most heavy metals are well-known toxic and carcinogenic agents and when discharged into wastewater represent a serious threat to the human population and the fauna and flora of the receiving water bodies. The present study aims to develop a procedure for Pb(II) removal. The study was based on using powdered activated carbon, which was prepared from walnut shells generated as plant wastes and modified with potassium carbonate or phosphoric acid as chemical agents. The main parameters, such as effect of pH, effect of sorbent dosage, Pb(II) concentrations, and various contact times influence the sorption process. The experimental results were analyzed by using Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich adsorption models. The kinetic study of Pb(II) on activated carbon from walnut shells was performed based on pseudo-first order and pseudo-second order equations. The data indicate that the adsorption kinetics follow the pseudo-second order rate. The procedure was successfully applied for Pb(II) removal from aqueous solutions.

Keywords

References

  1. Shen W, Chen S, Shi S, Li X, Zhang X, Hu W, Wang H. Adsorption of Cu(II) and Pb(II) onto diethylenetriamine-bacterial cellulose. Carbohydr Polym, 75, 110 (2009). http://dx.doi.org/10.1016/j.carbpol.2008.07.006.
  2. Paulino AT, Minasse FAS, Guilherme MR, Reis AV, Muniz EC, Nozaki J. Novel adsorbent based on silkworm chrysalides for removal of heavy metals from wastewaters. J Colloid Interface Sci, 301, 479 (2006). http://dx.doi.org/10.1016/j.jcis.2006.05.032.
  3. Naiya TK, Bhattacharya AK, Das SK. Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina. J Colloid Interface Sci, 333, 14 (2009). http://dx.doi.org/10.1016/j.jcis.2009.01.003.
  4. Davila-Jimenez MM, Elizalde-Gonzalez MaP, Geyer W, Mattusch J, Wennrich R. Adsorption of metal cations from aqueous solution onto a natural and a model biocomposite. Colloids Surf Physicochem Eng Aspects, 219, 243 (2003). http://dx.doi.org/10.1016/s0927-7757(03)00052-9.
  5. Wan Ngah WS, Hanafiah MAKM. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour Technol, 99, 3935 (2008). http://dx.doi. org/10.1016/j.biortech.2007.06.011.
  6. Shen W, Chen S, Shi S, Li X, Zhang X, Hu W, Wang H. Adsorption of Cu(II) and Pb(II) onto diethylenetriamine-bacterial cellulose. Carbohydr Polym, 75, 110 (2009). http://dx.doi.org/10.1016/j.carbpol.2008.07.006.
  7. Langmuir I. The constitution and fundamental properties of solids and liquids. Part I. Solids. J Am Chem Soc, 38, 2221 (1916). http://dx.doi.org/10.1021/ja02268a002.
  8. Hall KR, Eagleton LC, Acrivos A, Vermeulen T. Pore- and soliddiffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem Fundam, 5, 212 (1966). http://dx.doi.org/10.1021/i160018a011.
  9. Allen SJ, McKay G, Porter JF. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. J Colloid Interface Sci, 280, 322 (2004). http://dx.doi. org/10.1016/j.jcis.2004.08.078.
  10. Lagergren S. About the theory of so-called adsorption of soluble substances. Kunglia Svenska Vetenskapsakademiens Handlingar, 24, 1 (1898).
  11. Hameed BH. Spent tea leaves: a new non-conventional and lowcost adsorbent for removal of basic dye from aqueous solutions. J Hazard Mater, 161, 753 (2009). http://dx.doi.org/10.1016/j.jhazmat.2008.04.019.
  12. Kavitha D, Namasivayam C. Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresour Technol, 98, 14 (2007). http://dx.doi.org/10.1016/j.biortech.2005.12.008.
  13. Kavitha D, Namasivayam C. Recycling coir pith, an agricultural solid waste, for the removal of procion orange from wastewater. Dyes Pigments, 74, 237 (2007). http://dx.doi.org/10.1016/j.dyepig.2006.01.040.
  14. Ho YS. Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics, 59, 171 (2004). http://dx.doi. org/10.1023/B:SCIE.0000013305.99473.cf.
  15. Aharoni C, Spark DL. Kinetics of soil chemical reactions--a theoretical treatment. In: Sparks DL, Suarez DL, Soil Science Society of America, eds. Rates of Soil Chemical Processes, Soil Science Society of America, Madison, 1 (1991).
  16. Ho YS. Adsorption of heavy metals from waste streams by peat [PhD Thesis], University of Birmingham, Birmingham, UK (1995).
  17. McKay G, Ho YS. Sorption of dye from aqueous solution by peat. Chem Eng J, 70, 115 (1998). http://dx.doi.org/10.1016/s0923-0467(98)00076-1.
  18. Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem, 34, 451 (1999). http://dx.doi.org/10.1016/s0032-9592(98)00112-5.
  19. Ho YS, McKay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res, 34, 735 (2000). http://dx.doi. org/10.1016/s0043-1354(99)00232-8.

Cited by

  1. Equilibrium, kinetic and thermodynamic studies of biosorption of zinc ions from industrial wastewater using derived composite biosorbents from walnut shell vol.12, pp.9, 2018, https://doi.org/10.5897/AJEST2018.2515