DOI QR코드

DOI QR Code

Effect of the Number of Passes through Grinder on the Pore Characteristics of Nanofibrillated Cellulose Mat

그라인딩 처리 횟수에 따른 나노피브릴화 셀룰로오스 매트의 공극 특성

  • Sim, Kyujeong (Dept. of Forest Sciences, Seoul National University) ;
  • Ryu, Jaeho (Dept. of Forest Sciences, Seoul National University) ;
  • Youn, Hye Jung (Dept. of Forest Sciences, Seoul National University)
  • 심규정 (서울대학교 농업생명과학대학 산림과학부) ;
  • 류재호 (서울대학교 농업생명과학대학 산림과학부) ;
  • 윤혜정 (서울대학교 농업생명과학대학 산림과학부)
  • Received : 2013.01.29
  • Accepted : 2013.02.08
  • Published : 2013.02.28

Abstract

In this study, we investigated the effect of the number of passes through agrinder on the pore characteristics of nanofibrillated cellulose (NFC) mat. The beaten pulp suspension was used to make NFC suspension using a grinder. To evaluate the pore characteristics of a NFC mat, the surface morphology of the dried NFC mat was observed with FE-SEM and the specific surface area was analyzed with BET nitrogen gas adsorption. The structure of NFC mat was changed with the different number of passes and drying methods. The specific surface area of NFC mat increased with the increase in the number of passes. The 20-passed NFC mat had 20 times larger specific surface area ($141m^2/g$) compared to the 0-passed NFC mat. The specific surface area was strongly correlated with the average pore size in NFC mat. The average pore diameter in NFC mat was calculated from the gas sorption isotherms using BJH model. The value was 13 - 15 nm, indicating that the NFC mat had mesoporous structure.

Keywords

References

  1. Ranby, B.G., The cellulose micelles, Tappi 35(2):53-58 (1952).
  2. Habibi, Y., Lucia, L.A., and Rojas, O., Cellulose nanocrystals: Chemistry, self-assembly, and applications, Chem. Rev. 110(6):3479-3500 (2010). https://doi.org/10.1021/cr900339w
  3. Herrick F.W., Casebier, R.L., Hamilton, J.K., and Sandberg, K.R., Microfibrillated cellulose: morphology and accessibility, J. Appl. Polym. Sci.: Appl. Polym. Symp. 37:797-813 (1983).
  4. Turbak, A.F., Snyder, F.W., and Sandberg, K.R., Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential, J. Appl. Polym. Sci.: Appl. Polym. Symp. 37:815-827 (1983).
  5. Iwamoto, S., Nakagaito, A.N., Yano, H., and Nogi, M., Optically transparent composites reinforced with plant fiber-based nanofibers, Appl. Phys. A 81(6):1109- 1112 (2005).
  6. Nakagaito, A.N., and Yano, H., The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites, Appl. Phys. A 78(4):547-552 (2004). https://doi.org/10.1007/s00339-003-2453-5
  7. Aulin, C., Netrval, J., Wagberg, L., and Lindstrom, T., Aerogels from nanofibrillated cellulose with tunable oleophobicity, Soft Matter 6(14):3298-3305 (2010). https://doi.org/10.1039/c001939a
  8. Taipale, T., Österberg, M., Nykänen, A., Ruokolainen, J., and Laine, J., Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength, Cellulose 17(5):1005-1020 (2010). https://doi.org/10.1007/s10570-010-9431-9
  9. Abe, K., Iwamoto, S., and Yano, H., Obtaining cellulose nanofibers with a uniform width of 15 nm from wood, Biomacromolecules 8(10):3276-3278 (2007). https://doi.org/10.1021/bm700624p
  10. Ifuku, S., and Saimoto, H., Chitin nanofibers: preparations, modifications, and applications, Nanoscale 4(11):3308-3318 (2012). https://doi.org/10.1039/c2nr30383c
  11. Iwamoto, S., Nakagaito, A.N., and Yano, H., Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites, Appl. Phys. A 89(2):461-466 (2007). https://doi.org/10.1007/s00339-007-4175-6
  12. Nogi, M., Iwamoto, S., Nakagaito, A.N., and Yano, H., Optically transparent nanofiber paper, Adv. Mater. 21(16):1595-1598 (2009). https://doi.org/10.1002/adma.200803174
  13. Lavoine, N., Desloges, I., Dufresne, A., and Bras, J., Microfibrillated cellulose - Its barrier properties and applications in cellulosic materials: A review, Carbohydr. Polym. 90(2):735-764 (2012). https://doi.org/10.1016/j.carbpol.2012.05.026
  14. Hubbe, M.A., Rojas, O.J., Lucia, L.A., and Sain, M., Cellulosic nanocomposites: a review, Bioresources 3(3):929-980 (2008).
  15. Siqueira, G., Bras, J., and Dufresne, A., Cellulosic bionanocomposites: a review of preparation, properties and applications, Polymers 2:728-765 (2010). https://doi.org/10.3390/polym2040728
  16. Siro, I., and Plackett, D., Microfibrillated cellulose and new nanocomposite materials: a review, Cellulose 17(3):459-494 (2010). https://doi.org/10.1007/s10570-010-9405-y
  17. Aulin, C., Gallstedt, M., and Lindström, T., Oxygen and oil barrier properties of microfibrillated cellulose films and coatings, Cellulose 17(3):559-574 (2010). https://doi.org/10.1007/s10570-009-9393-y
  18. Lui, A., and Talbot, F.D.F., Studies on the solvent exchange technique for making dry cellulose acetate membranes for the separation of gaseous mixtures, Appl. Polym. Sci. 36(8):1809-1820 (1988). https://doi.org/10.1002/app.1988.070360808
  19. Rouquerol, J., Avnir, D., Fairbridge, C.W., Everett, D.H., Haynes, J.H., Pernicone, N., Ramsay, J.D.F., Sing, K.S.W., and Unger, K.K., Recommendations for the characterization of porous solids (Technical Report, IUPAC), Pure Appl. Chem. 66(8):1739-1758 (1994). https://doi.org/10.1351/pac199466081739
  20. Webb, P.A., and Orr, C., Analytical methods in fine particle technology, Micromeritics Instrument Corporation, Norcross, GA, pp. 56-57 (1997).
  21. Sehaqui, H., Zhou, Q., and Berglund, L.A., High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC), Compos. Sci. Technol. 71(13):1593-1599 (2011). https://doi.org/10.1016/j.compscitech.2011.07.003
  22. Sehaqui, H., Nanofiber networks, aerogels and biocomposites based on nanofibrillated cellulose from wood, Doctoral Thesis, Stockholm, Sweden (2011).
  23. Aaltonen, O., and Jauhiainen, O., The preparation of lignocellulosic aerogels from ionic liquid solutions, Carbohydr. Polym. 75(1):125-129 (2009). https://doi.org/10.1016/j.carbpol.2008.07.008
  24. Deng, M., Qian, Z., Du, A., van Kasteren, J., and Wang, Y., Preparation of nanoporous cellulose foams from cellulose-ionic liquid solutions, Mater. Lett. 63(21):1851-1854 (2009). https://doi.org/10.1016/j.matlet.2009.05.064
  25. Barrett, E.P., Joyner, L.G., and Halenda, P.P., The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc. 73(1):373-380 (1951). https://doi.org/10.1021/ja01145a126
  26. http://www.kochmembrane.com/Learning-Center/ echnologies.aspx.

Cited by

  1. Surface Modification of Nanofibrillated Cellulose by LbL (Layer-by-Layer) Multilayering and its Effect on the Dewatering Ability of Suspension vol.46, pp.1, 2014, https://doi.org/10.7584/ktappi.2014.46.1.046
  2. Evaluation of Dewatering of Cellulose Nanofibrils Suspension and Effect of Cationic Polyelectrolyte Addition on Dewatering vol.46, pp.6, 2014, https://doi.org/10.7584/ktappi.2014.46.6.078
  3. Physical and bio-composite properties of nanocrystalline cellulose from wood, cotton linters, cattail, and red algae vol.22, pp.3, 2015, https://doi.org/10.1007/s10570-015-0633-z