• Title/Summary/Keyword: solution cavity

Search Result 367, Processing Time 0.028 seconds

NUMERICAL SIMULATION OF LID-DRIVEN FLOW IN A SQUARE CAVITY AT HIGH REYNOLDS NUMBERS (정사각 캐비티내 고레이놀즈수 Lid-Driven 유동의 수치해석)

  • Myong H. K.
    • Journal of computational fluids engineering
    • /
    • v.10 no.4 s.31
    • /
    • pp.18-23
    • /
    • 2005
  • Numerical simulations of two-dimensional steady incompressible lid-driven flow in a square cavity are presented by a new solution code(PowerCFD) which adopts an unstructured cell-centered method. Solutions are obtained for configurations with a Reynolds number as high as 10,000 with both rectangular and hybrid types of unstructured grid mesh in order to validate the code's independency of grid type. Interesting features of the flow are presented in detail and comparisons are made with benchmark solutions found in the literature. It is found that the code is capable of producing accurately the nature of the lid-driven cavity flow at high Reynolds numbers with no grid type dependency.

Simulation of flow-induced cavity resonance with turbulence models

  • Jang K S.;Park S. O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.110-112
    • /
    • 2003
  • A numerical simulation of an incompressible cavity flow is conducted using turbulence models. Cavity geometry and flow conditions are based on Cattafesta's experiment. Baldwin-Lomax model and ${\kappa}-{\varpi}$ model are employed. While simulation with Baldwin-Lomax model predicts the oscillatory features of the flow, the use of ${\kappa}-{\varpi}$ model in its original form makes the simulation converge to steady flow. To acquire oscillatory flow solution, Kato-Launder form and Time scale bound are adopted in production term of ${\kappa}-{\varpi}$ model. The strouhal number of the flow oscillations from the simulation results corresponds to 1 st mode in simulation but 2 nd mode in experiments. However mean velocity profile is in good agreement with the experimental data and the fluctuation profile follows the tendency of Cattafesta's results.

  • PDF

Numerical Simulation of 2-D Lid-Driven Cavity Plow at High Reynolds numbers (높은 Re수에서의 2차원 Lid-Driven 캐비티유동의 수치해석)

  • Myong H. K.;Kim J. E.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.153-158
    • /
    • 2005
  • Numerical simulations of two-dimensional steady incompressible lid-driven flow in a square cavity are presented to verify the validity of a new solution code(PowerCFD) with unstructured grids. The code uses the non-staggered(collocated) grid approach which is very popular for incompressible flow analysis because of its numerical efficiency on the curvilinear or unstructured grids. Solutions are obtained for configurations with a Reynolds number as high as 10,000 with both rectangular and hybrid types of unstructured grid mesh. Interesting features of the flow are presented in detail and comparisons are made with benchmark solutions found in the literature. It is found that the code is capable of producing accurately the nature of the lid-driven cavity flow at high Reynolds numbers.

  • PDF

SINGULAR PERIODIC SOLUTIONS OF A CLASS OF ELASTODYNAMICS EQUATIONS

  • Yuan, Xuegang;Zhang, Yabo
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.501-515
    • /
    • 2009
  • A second order nonlinear ordinary differential equation is obtained by solving the initial-boundary value problem of a class of elas-todynamics equations, which models the radially symmetric motion of a incompressible hyper-elastic solid sphere under a suddenly applied surface tensile load. Some new conclusions are presented. All existence conditions of nonzero solutions of the ordinary differential equation, which describes cavity formation and motion in the interior of the sphere, are presented. It is proved that the differential equation has singular periodic solutions only when the surface tensile load exceeds a critical value, in this case, a cavity would form in the interior of the sphere and the motion of the cavity with time would present a class of singular periodic oscillations, otherwise, the sphere remains a solid one. To better understand the results obtained in this paper, the modified Varga material is considered simultaneously as an example, and numerical simulations are given.

  • PDF

Stress field around axisymmetric partially supported cavities in elastic continuum-analytical solutions

  • Lukic, D.;Prokic, A.;Anagnosti, P.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.4
    • /
    • pp.409-430
    • /
    • 2010
  • The present paper will be concerned to the investigation of the stress-strain field around the cavity that is loaded or partially loaded at the inner surface by the rotationally symmetric loading. The cavity of the spherical, cylindrical or elliptical shape is situated in a stressed elastic continuum, subjected to the gravitation field. As the contribution to the similar investigations, the paper introduces the new function of loading in the form of the infinite sine series. Besides, in this paper the solution of stresses around an oblong ellipsoid cavity, has been obtained using appropriate curvilinear elliptical coordinates. This analytical approach avoids the solutions of the same problem that lead to expressions that contain rather complex integrations. Thus the presented solutions provide the applicable and explicit expressions for stresses and strains developed in infinite series with easily determinable coefficients by the use of contemporary mathematical packages. The numerical examples are also included to confirm the convergence of the obtained solutions.

Reduction of Stem Inside-cavity and Improvement of Flower Quality in Chrysanthemum 'Baekma' by pH Stabilization and Foliar Spray of Ethephon (양액 pH 안정화와 에세폰 살포에 의한 국화 '백마'의 줄기동공 경감과 절화품질 향상)

  • Hwang, In Taek;Cho, Kyung Chul;Kim, Hee Gon;Ki, Gwang Yeon;Yoon, Bong Ki;Choi, Kyung Ju;Lim, Jin Hee;Choi, Sung Ryul;Shin, Hak Ki
    • FLOWER RESEARCH JOURNAL
    • /
    • v.18 no.4
    • /
    • pp.238-243
    • /
    • 2010
  • This study was conducted to investigate effects of nutrient solution pH control agent and foliar spray of ethephon on the reduction of stem inside-cavity and improvement of flower quality in chrysanthemum 'Baekma'. Changes of pH in nutrient solution as affected by the kind of pH control agent showed more settled pattern in the plot of KOH treatment than in others. Plant growth and development such as cut flower length, leaf numbers, cut flower weight and petal number were the greatest in the plot of KOH. However, the size and area of stem cavity was large in KOH rather than $KHCO_3$. As changes in the absorbing patterns of mineral elements as affected by nutrient solution pH control agent in closed system, contents of total nitrate, phosphorus, potassium and calcium by $KHCO_3$ was absorbed into the plant less than KOH, so that it remained a lot of mineral element residues rather than KOH in closed system. Plant growth as affected by the foliar spray of ethephon showed growth retardation effect in the plot of solution diluted to 1 : 500 and growth promotion effect in the plot of solution diluted to 1 : 1,000 or 1 : 2,000. The number of petals was the best in the plot of foliar spray of ethephon solution diluted to 1 : 1,000 before flowering at 45 days showing 331 petals compared to control showing 302 petals. The size and area of stem cavity as affected the foliar spray of ethephon was smaller 1 mm and 7%, respectively, in the plot of solution diluted to 1 : 2,000 before flowering at 30 days than in control. Therefore, treating pH stabilization using KOH after floral initiation stage with the foliar spray of ethephon solution diluted to 1 : 2,000 before flowering at 30 days would help to reduce stem cavity size and improve flower quality in hydroponically grown chrysanthemum 'Baekma'.

A Vorticity-Based Method for Incompressible Viscous Flow Analysis (와도를 기저로 한 비압축성 점성유동해석 방법)

  • Suh J. C.
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.11-21
    • /
    • 1998
  • A vorticity-based method for the numerical solution of the two-dimensional incompressible Navier-Stokes equations is presented. The governing equations for vorticity, velocity and pressure variables are expressed in an integro-differential form. The global coupling between the vorticity and the pressure boundary conditions is fully considered in an iterative procedure when numerical schemes are employed. The finite volume method of the second order TVD scheme is implemented to integrate the vorticity transport equation with the dynamic vorticity boundary condition. The velocity field is obtained by using the Biot-Savart integral. The Green's scalar identity is used to solve the total pressure in an integral approach similar to the surface panel methods which have been well established for potential flow analysis. The present formulation is validated by comparison with data from the literature for the two-dimensional cavity flow driven by shear in a square cavity. We take two types of the cavity now: (ⅰ) driven by non-uniform shear on top lid and body forces for which the exact solution exists, and (ⅱ) driven only by uniform shear (of the classical type).

  • PDF

OPTIMAL CONTROL PROBLEM OF NAVIER-STOKES EQUATIONS FOR THE DRIVEN CAVITY FLOW

  • Lee, Yong-Hun
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.1
    • /
    • pp.291-301
    • /
    • 1999
  • We study an optimal control problem of the fluid flow governed by the navier-Stokes equations. The control problem is formulated with the flow in the driven cavity. Existence of an optimal solution and first-order optimality condition of the optimal control are derived. We report the numerical results for the finite eleme수 approximations of the optimal solutions.

Detection of Cavities by Inverse Heat Conduction Boundary Element Method Using Minimal Energy Technique (최소 에너지기법을 이용한 역 열전도 경계요소법의 공동 탐지)

  • Choi, C.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.4
    • /
    • pp.237-247
    • /
    • 1997
  • A geometrical inverse heat conduction problem is solved for the infrared scanning cavity detection by the boundary element method using minimal energy technique. By minimizing the kinetic energy of temperature field, boundary element equations are converted to the quadratic programming problem. A hypothetical inner boundary is defined such that the actual cavity is located interior to the domain. Temperatures at hypothetical inner boundary are determined to meet the constraints of mea- surement error of surface temperature obtained by infrared scanning, and then boundary element analysis is peformed for the position of an unknown boundary (cavity). Cavity detection algorithm is provided, and the effects of minimal energy technique on the inverse solution method are investigated by means of numerical analysis.

  • PDF