References
- Chen, Y.Z. (2004), "Stress analysis of a cylindrical bar with a spherical cavity or rigid inclusion by the eigenfunction expansion variational method", Int. J. Eng. Sci., 42, 325-338. https://doi.org/10.1016/j.ijengsci.2003.07.001
- Chen, T., Hsieh, C.H. and Chuang, P.C. (2003), "A spherical inclusion with inhomogeneous interface in conduction", Chinese J. Mech. Series A., 19(1), 1-8.
- Chen, Y.Z. and Lee, K.Y. (2002), "Solution of flat crack problem by using variational principle and differentialintegral equation", Int. J. Solids Struct., 39(23), 5787-5797. https://doi.org/10.1016/S0020-7683(02)00407-9
- Dong, C.Y., Lo, S.H. and Cheung, Y.K. (2003), "Stress analysis of inclusion problems of various shapes in an infinite anisotropic elastic medium", Comput. Meth. Appl. Mech. Eng., 192, 683-696. https://doi.org/10.1016/S0045-7825(02)00579-0
- Duan, H.L., Wang, J., Huang, Z.P. and Zhong, Y. (2005), "Stress fields of a spheroidal inhomogeneity with an interphase in an infinite medium under remote loadings", P. Roy. Soc. A-Math. Phy., 461(2056), 1055-1080. https://doi.org/10.1098/rspa.2004.1396
- Eshelby, J.D. (1957), "The determination of the elastic field of an ellipsoidal inclusion, and related problems", P. Roy. Soc. A-Math. Phy., 241(1226), 376-396. https://doi.org/10.1098/rspa.1957.0133
- Eshelby, J.D. (1959), "The elastic field outside an ellipsoidal inclusion", P. Roy. Soc. A-Math. Phy., 252(1271), 561-569. https://doi.org/10.1098/rspa.1959.0173
- Jaeger, J.C. and Cook, N.G.W. (1969), Fundamentals of Rock Mech., Methuen & Co. Ltd., London.
- Lukic, D., Prokic, A. and Anagnosti, P. (2009), "Stress-strain field around elliptic cavities in elastic continuum", Eur. J. Mech. A-Solid., 28, 86-93. https://doi.org/10.1016/j.euromechsol.2008.04.005
- Lukic, D. (1998), Contribution to Methods of Stress State Determination Around Cavity of Rotational Ellipsoid Shape, by Use of Elliptic Coordinates, PhD thesis, University of Belgrade (in Serbian).
- Lur'e, A.E. (1964), Three-dimensional Problems of the Theory of Elasticity, Interscience, New Jork.
- Malvern, E. L. (1969), Introduction to the Mechanics of a Continuum Medium, Prentece - Hall, Inc.
- Markenscoff, X. (1998a), "Inclusions of uniform eigenstrains and constant or other stress dependence", J. Appl. Mech.-T. ASME, 65, 863-866. https://doi.org/10.1115/1.2791923
- Markenscoff, X. (1998b), "Inclusions with constant eigenstress", J. Mech. Phys. Solids, 46, 2297-2301. https://doi.org/10.1016/S0022-5096(98)00039-8
- Neuber, H. (1937), Kerbspannungslehre, Springer-Verlag, Berlin.
- Ou, Z.Y., Wang, G.F. and Wang, T.J. (2008), "Effect of residual surface tension on the stress concentration around a nanosized spheroidal cavity", Int. J. Eng. Sci., 46, 475-485. https://doi.org/10.1016/j.ijengsci.2007.12.008
- Ou, Z.Y., Wang, G.F. and Wang, T.J. (2009), "Elastic fields around a nanosized spheroidal cavity under arbitrary uniform remote loadings", Eur. J. Mech. A-Solid., 28, 110-120. https://doi.org/10.1016/j.euromechsol.2008.05.001
- Papkovich, P.F. (1932), "Solution generale des equations differentielles fondamentales d'elasticite, exprimee par trois fonctions harmoniques", Academie des sciences, Paris, 195, 513-515.
- Rahman, M. (2002), "The isotropic ellipsoidal inclusion with a polynomial distribution of eigenstrain", J. Appl. Mech.-T. ASME, 69, 593-601. https://doi.org/10.1115/1.1491270
- Riccardi, A. and Montheillet, F. (1999), "A generalized self-consistent method for solids containing randomly oriented spheroidal inclusions", Acta Mech., 133, 39-56. https://doi.org/10.1007/BF01179009
- Sharma, P. and Sharma, R. (2003), "On the Eshelby's inclusion problem for ellipsoids with nonuniform dilatational gaussian and exponential eigenstrains", Trans. ASME, 70, 418-425. https://doi.org/10.1115/1.1558078
- Sternberg, E. and Sadowsky, M.A. (1952), "On the axisymmetric problem of the theory of elasticity for an infinite region containing two spherical cavities", J. Appl. Mech.-T. ASME, 74, 19-27.
- Tran-Cong, T. (1997), "On the solutions of Boussinesq, Love, and Reissner and Wennagel for axisymmetric elastic deformations", Q. J. Mech. Appl. Math., 50, 195-210. https://doi.org/10.1093/qjmam/50.2.195
- Tsuchida, E., Arai, Y., Nakazawa, K. and Jasiuk, I. (2000), "The elastic stress field in a half- space containing a prolate spheroidal inhomogeneity subject to pure shear eigenstrain", Mater. Sci. Eng., 285, 338-344.
- Xu, R.X., Thompson, J.C. and Topper, T.H. (1996), "Approximate expressions for three-dimensional notch tip stress fields", Fatigue Fract. Eng. M., 19(7), 893-902. https://doi.org/10.1111/j.1460-2695.1996.tb01024.x
Cited by
- Effect of the rotation on a non-homogeneous infinite cylinder of orthotropic material with external magnetic field vol.54, pp.1, 2015, https://doi.org/10.12989/sem.2015.54.1.135
- Stress state around cylindrical cavities in transversally isotropic rock mass vol.6, pp.3, 2014, https://doi.org/10.12989/gae.2014.6.3.213