• Title/Summary/Keyword: soil treatment

Search Result 3,289, Processing Time 0.032 seconds

Scarification and Gibberellic Acid Affecting to Dormancy Breaking of Variegated Solomon's Seal (Polygonatum odoratum var. pluriflorum 'Variegatum') (파상처리와 지베렐린을 이용한 무늬둥굴레(Polygonatum odoratum var. pluriflorum 'Variegatum')의 휴면타파)

  • Rhie, Yong Ha;Lee, Seung Youn;Park, Ju Hyun;Kim, Ki Sun
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.296-302
    • /
    • 2014
  • The foliage of variegated Solomon's seal is excellent in cut flower arrangements. However, it has a restricted marketing period because the harvesting is limited in spring and summer. The increased interest requires the year-round production, thus techniques for dormancy breaking and forcing without low temperature treatment is needed. Therefore, experiments were conducted to d etermine whether gibberellic acid (GA) could break dormancy in variegated Solomon's seal. Thes prouting of dormant bud did not occur throughout the experiment when $GA_3$ $400mg{\cdot}L^{-1}$ was applied to dormant rhizomes as a soil drench. However, when plants were treated with a GA drench after scratch with razor blade or were given direct injection of GA, percent sprouting was increased up to 100 or 83.3%, respectively. However, because treatments with razor or syringe may damage internal organs, we tested another method, scarifying the rhizomes with sodium hypochlorite (NaOCl). Rhizome scarification with 4% NaOCl for 6 or 24 hours followed by drench of $GA_3$ $400mg{\cdot}L^{-1}$ increased the dormancy breaking percentage to 70 or 86.7%, respectively. Moreover, scarified and GA-treated rhizomes produced more leaves than untreated or GA-soil drenched plants in the glasshouse. These results showed the possibility of year-round production of variegated Solomon's seal foliage with rhizome scarification and GA treatments.

Uncertainty-based Decision on Mitigation of Nitrous Oxide Emissions in Upland Soil (불확도 기반 밭토양 아산화질소 배출 저감 여부 판정)

  • Ju, Okjung;Kang, Namgoo;Lim, Gapjune
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.307-316
    • /
    • 2019
  • In the agricultural sector, greenhouse gas emissions vary depending on the interaction of all ecosystem changes such as soil environment, weather environment, crop growth, and anthropogenic farming activities. Agricultural sector greenhouse gas emissions resulting from many of these interactions are highly variable. Uncertainty-based evaluation that defines the interval with confidence level of greenhouse gas emission and absorption is necessary to take account of the variance characteristics of individual emissions, but research on uncertainty evaluation method is insufficient. This study aims to decide on the effect of reducing N2O emissions from upland soils using an uncertainty-based approach. An uncertainty-based approach confirmed whether there was a difference between confidence intervals in the 5 different fertilizer treatment groups to reduce greenhouse gas emissions. Unlike the statistically significant test with three repetition averages, the uncertainty-based approach method estimated in this study is able to estimate the confidence interval considering the distribution characteristics of the emissions, such as the dispersion characteristics of individual emissions. Therefore, it is considered that the reliability of emissions can be improved by statistically testing the variance characteristics of emissions such as the uncertainty-based approach. It is hoped that the direction of the uncertainty-based approach for the effect of reducing greenhouse gas emissions in agriculture will be helpful in the future development of agricultural greenhouse gas emission reduction technology, adaptation to climate change, and further development of sustainable eco-social system.

Evaluation of Agro- Environmental Effect and Soil Carbon Sequestration to different Application Ratios of Supplemented Biochar Pellet in the Paddy during Rice Cultivation (벼 재배 시 바이오차 펠렛 시용 수준에 따른 농업 환경 영향 및 토양 탄소격리 평가)

  • Shin, JoungDu;Park, Dogyun;Kim, Huiseon;Lee, SunIl;Hong, SeungGil
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.2
    • /
    • pp.114-121
    • /
    • 2020
  • BACKGROUND: Biochar-based fertilizers delay the nutrient release and feature a slow release effect for agricultural and environmental advantages. This experiment was conducted to evaluate agro-environmental effects of different application ratios of modified biochar pellets supplemented. METHODS AND RESULTS: The treatments consisted of the control, 40% N, 60% N and 60% N (0.07M MgO) of modified supplemented biochar pellets (MSBP), which were based on recommended ratio of nitrogen for rice cultivation. For the paddy water, the NH4-N and NO3-N concentrations in whole treatments rapidly increased at 84 days and 40 days after transplanting, respectively. The PO4-P concentrations in the MSBP were generally lower than those of the control. For the paddy soil, NH4-N concentrations in the MSBP were higher than those of the control at 5 days after transplanting, while NO3-N concentrations were not significantly different in the treatments through rice cultivation. P2O5 concentrations in the control were higher than those of the MSBP until 40 days after transplanting while K2O concentrations were not significantly different among the treatment. The highest carbon sequestration was 970 kg ha-1 in the 60% N (0.07M MgO), and the potential carbon storage in the 60% N (0.07M MgO) was higher at 222 kg ha-1 than the control during rice cultivation. It shown that the rice yield in the control was not significantly different from the 40% N and 60% N (0.07M MgO) application plots. CONCLUSION: Application of MSBP for rice cultivation was effective for carbon sequestration and agro-environmental effects even though nitrogen application ratio was reduced at 40% based on recommended application ratio of fertilizer.

Effects of Cadmium Concentration in Soils on Growth and Cadmium Uptake of Vegetable (토양중 카드뮴 농도가 채소류의 생육과 카드뮴 흡수이행에 미치는 영향)

  • Kim, Won-Il;Jung, Goo-Bok;Kim, Min-Kyeong;Park, Kwang-Lai;Yun, Sun-Gang
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.3
    • /
    • pp.175-179
    • /
    • 2001
  • To find out the effect of cadmium(Cd) on growth of major vegetables in Korea, phytotoxicity and absorption of Cd were investigated with chinese cabbage, radish, and lettuce grown in upland soils of different Cd concentrations. Cadmium phytotoxicity was shown by growth retardation and leaf chlorosis in chinese cabbage and lettuce at the early growing stage. The threshold concentrations of growth damage resulting from the significant reduction (5%) of growth and yield of chinese cabbage and lettuce were $50{\sim}100$ and $10{\sim}25$ mg/kg soil, respectively. However, there was no significant reduction of radish yield under Cd treatment of 100 mg/kg soil. As Cd concentrations in soils increased, the contents of Cd in products were significantly increased, basically. The contents of Cd in edible part of chinese cabbage, radish, and lettuce grown at the 5 mg/kg Cd treated soils were 0.13, 0.18, and 3.37 mg/kg FW, respectively. Total absorbed Cd in the vegetables tended to occur in the following order, chinese cabbage > radish > lettuce above 25 mg/kg Cd treated soils whereas lettuce absorbed more Cd than chinese cabbage and radish below 10 mg/kg Cd concentration.

  • PDF

Analysis on Impact Factors of Open-cut Type Excavation Work using Numerical Analysis Method (수치해석기법을 이용한 개착식 지반굴착공사의 영향인자 분석)

  • Seong, Joo-Hyun;Kim, Yong-Soo;Shin, Byoung-Gil
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.43-53
    • /
    • 2013
  • In this study, an analysis about the causes of different types of excavation on accidents is required in order to prevent the frequently occurring accidents related to the earth retaining structure and excavation. Also, analysis of influence was performed by using numerical typical soil conditions and construction trend using numerical analysis method. According to the analysis results of 25 accident cases, the main influence factors were found as following: insufficient of soil survey, instability of temporary facility and lack of groundwater treatment, etc. Furthermore, in the numerical analysis result of 22 cases, drainage method was occurred larger settlement than waterproof method in the Inland. In case of applying the earth anchor method, it needs more detailed in the regions, which are discovered soft ground or rock discontinuities. Also, The consolidated clay absolutely needs further consideration of excess hydrostatic pressure.

The Effect of NaCI on the Growth and Ginsenoside Production from Ginseng Hairy Root (인삼모상근의 생장과 Ginsenoside 생산에 미치는 NaCl의 영향)

  • Kim, Yu-Jin;Sim, Ju-Sun;;Lee, Chung-Hyae;In, Jun-Gyo;Lee, Bum-Soo;Yang, Deok-Chun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.2
    • /
    • pp.94-99
    • /
    • 2008
  • Korean ginseng (Panax ginseng C.A. Meyer) is very difficult to obtain stable production of qualified ginseng roots because of variable stresses in soil environments. High salt concentrations in the ginseng nursery soil environment of Korea is one of important reducing factors for the stable production of quality ginseng. These studies were accomplished to identify the growth rate and production of ginsenoside from ginseng hairy root against NaCI. In the MS liquid culture, the highest contents and productivity of ginsenosides were appeared at 4 week after onset of the treatment of 0.1 M NaCI. And 0.24 M NaCI was more effective on the growth of ginseng hairy root under light condition than dark condition. Plants generally produce secondary metabolites in nature as a defense mechanism against pathogenic and insect attack. In this study, NaCI acts as a kind of stress as well as elicitor for production of ginsenosides.

Studies on the Herbicidal Properties of Bensulfuron methyl(DPX-F5384) -1. Variation of Phytotoxicity and Weeding Effect Caused by Herbicide Treatment in Mechanically Transplanted Paddy Field (제초제(除草劑) Bensulfuron methyl(DPX-F5384)의 작용특성(作用特性)에 관한 연구(硏究)- 제1보(第1報) 기계이앙답(機械移秧畓)에서의 약해(藥害) 및 약효(藥效) 변동요인(變動要因))

  • Ryang, H.S.;Jang, I.S.;Ma, S.Y.;Jeong, S.H.
    • Korean Journal of Weed Science
    • /
    • v.6 no.2
    • /
    • pp.134-145
    • /
    • 1986
  • The experiment was crried out to evaluated the herbicidal properties of bensulfuron methyl [methyl 2-[[[[[(4, 6-dimethoxy pyrimidine-2yl) amino] carbonyl] amino] sulfonyl] methyl] benzoate]. No phytotoxicity was observed when bensulfuron methyl was applied at 3 and 6 g a.i./ 10a while the application rate 12 g a.i./10a slightly retared the growth of rice. The phytotoxicity decreased as the application time was delayed. The effect of application rate, leaching grade, transplanting depth, soil type and temperature on crop injury was little. Japonica variety (Dong-Jin) was more sensitive to bensulfuron methyl than indica X japonica variety (Sam-Kang). Bensulfuron methyl controlled effectively perennial weeds such as Sagittaria pygmaea Miq., Potamogeton diatinctus A. Benn., Cyperus serotinus Rottb., Sagittaria trifolia L., Eleocharis kuroguwai Ohwi. including most annual weeds except Echinochloa crus galli P. Beauv. The effect slightly decreased with lowering the temperature increasing the leaching grade. Application time and soil type employed did not affect the weeding effect.

  • PDF

Isolation of a Phenol-degrading Bacterial Strain and Biological Treatment of Wastewater Containing Phenols (Phenol 분해균주의 분리 및 페놀함유 폐수의 생물학적 처리)

  • Lee, Hyun Don;Lee, Myoung Eun;Kim, Hyung Gab;Suh, Hyun-Hyo
    • Journal of Life Science
    • /
    • v.23 no.10
    • /
    • pp.1273-1279
    • /
    • 2013
  • Aromatic hydrocarbons, such as phenol, have been detected frequently in wastewater, soil, and groundwater because of the extensive use of oil products. Bacterial strains (56 isolates) that degraded phenol were isolated from soil and industrial wastewater contaminated with hydrocarbons. GN13, which showed the best cell growth and phenol degradation, was selected for further analysis. The GN13 isolate was identified as Neisseria sp. based on the results of morphological, physiological, and biochemical taxonomic analyses and designated as Neisseria sp. GN13. The optimum temperature and pH for phenol removal of Neisseria sp. GN13 was $32^{\circ}C$ and 7.0, respectively. The highest cell growth occurred after cultivation for 30 hours in a jar fermentor using optimized medium containing 1,000 mg/l of phenol as the sole carbon source. Phenol was not detected after 27 hours of cultivation. Based on the analysis of catechol dioxygenase, it seemed that catechol was degraded through the meta- and ortho-cleavage pathway. Analysis of the biodegradation of phenol by Neisseria sp. GN13 in artificial wastewater containing phenol showed that the removal rate of phenol was 97% during incubation of 30 hours. The removal rate of total organic carbon (TOC) by Neisseria sp. GN13 and activated sludge was 83% and 78%, respectively. The COD removal rate by Neisseria sp. GN13 from petrochemical wastewater was about 1.3 times higher than that of a control containing only activated sludge.

Improved Treatment Technique for the Reuse of Waste Solution Generated from a Electrokinetic Decontamination System (동전기제염장치에서 발생한 폐액의 재사용을 위한 개선된 처리기술)

  • Kim, Wan-Suk;Kim, Seung-Soo;Kim, Gye-Nam;Park, Uk-Ryang;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • A large amount of acidic waste solution is generated from the practical electrokinetic decontamination equipments for the remediation of soil contaminated with uranium. After filtration of uranium hydroxides formed by adding CaO into the waste solution, the filtrate was recycled in order to reduce the volume of waste solution. However, when the filtrate was used in an electrokinetic equipment, the low permeability of the filtrate from anode cell to cathode cell due to a high concentration of calcium made several problems such as the weakening of a fabric tamis, the corrosion of electric wire and the adhension of metallic oxides to the surface of cathode electrode. To solve these problems, sulfuric acid was added into the filtrate and calcium in the solution was removed as $CaSO_4$ precipitate. A decontamination test using a small electrokinetic equipment for 20 days indicated that Ca-removed waste solution decreased uranium concentration of the waste soil to 0.35 Bq/g, which is a similar to a decontamination result obtained by distilled water.

Identification of reduced plant uptake and reduction effects of azoxystrobin, procymidone and tricyclazole by biochars and quicklime (토양 중 바이오차, 생석회를 이용한 azoxystrobin, procymidone 및 tricyclazole 저감화 효과 연구)

  • Lee, Hyo-Sub;Hwang, In-Seong;Park, Sang-Won;Choi, Geun-Hyoung;Ryu, Song-Hee
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.3
    • /
    • pp.275-282
    • /
    • 2020
  • As pesticide safety was extended to agricultural environments and Positive List System was carried out, Pesticide safety management in soils has become even more important. To improve pesticide safety in soils needs the degradation technology of the residues in soils and reduce plant uptake of pesticides. In this study, biochars and quicklime as the degradation methods of pesticides (azoxystrboin, procymidone and tricyclazole) were used to identify the reduction effects. The experimental methods were putting biochars and quicklimes (0, 0.5, 1.0, 2.0% per 15 cm soil weight) in soils and analyzing the pesticide residues at 0, 10, 20, 35, 50 day. To identify the reduction effects of uptake from soil to korean cabbages (roots, leave, stems) by biochar treatment, the residues in samples were analyzed. As a results, azoxystrobin (36-96%), procymidone (40-117%) and tricyclazole (26-83%) were reduced in soils when treated with 2.0% quicklime (p<0.05). There were no reduction effect in soils when treated with 1.0% or less biochar. However, the amounts of residues translocated to roots (0.11-1.62 mg/kg), leave (0.05-0.29 mg/kg), stems (0.06-0.1 mg/kg) were reduced treated with 2.0% biochar treatments. The biochar and quicklime can be applicable to agricultural field to improve pesticide safety in soils.