DOI QR코드

DOI QR Code

Improved Treatment Technique for the Reuse of Waste Solution Generated from a Electrokinetic Decontamination System

동전기제염장치에서 발생한 폐액의 재사용을 위한 개선된 처리기술

  • Received : 2014.01.08
  • Accepted : 2014.02.04
  • Published : 2014.03.30

Abstract

A large amount of acidic waste solution is generated from the practical electrokinetic decontamination equipments for the remediation of soil contaminated with uranium. After filtration of uranium hydroxides formed by adding CaO into the waste solution, the filtrate was recycled in order to reduce the volume of waste solution. However, when the filtrate was used in an electrokinetic equipment, the low permeability of the filtrate from anode cell to cathode cell due to a high concentration of calcium made several problems such as the weakening of a fabric tamis, the corrosion of electric wire and the adhension of metallic oxides to the surface of cathode electrode. To solve these problems, sulfuric acid was added into the filtrate and calcium in the solution was removed as $CaSO_4$ precipitate. A decontamination test using a small electrokinetic equipment for 20 days indicated that Ca-removed waste solution decreased uranium concentration of the waste soil to 0.35 Bq/g, which is a similar to a decontamination result obtained by distilled water.

우라늄으로 오염된 토양을 복원하기 위해 실규모의 동전기제염장치로 제염하는 과정에서 많은 산폐액이 발생한다. 발생한 산폐액에 CaO를 가해 우라늄수산화물을 침전시켜 여과한 다음, 방사성 폐액을 줄이기 위하여 이 용액을 재사용하였다. 그러나 이 용액을 동전기에 재사용할 경우, 높은 농도의 칼슘 때문에 양극실에서 음극실로 용액이동 속도가 감소하여 여과포의 약화, 전선 부식, 음극면에 산화물 부착 등의 문제점이 발생하였다. 이 문제들을 해결하기 위하여 재생액에 황산을 넣어 $CaSO_4$로 침전시켜 칼슘을 제거하였다. 칼슘이 제거된 재생액을 사용하여 소형 동전기 장치에서 20 일간 토양제염 실험을 수행한 결과는 세척후 토양내 우라늄 잔류 농도가 0.35 Bq/g로 감소하였으며, 이는 증류수 제염한 결과와 유사하게 나타났다.

Keywords

References

  1. G.N. Kim, W.K. Choi, C.H. Bung, and J.K. Moon, "Development of a washing system for soil contaminated with radionuclides around Triga reactor", J. Ind. Eng. Chem., 13, pp. 406-413 (2007).
  2. G.N. Kim, D.B. Shon, H.M. Park, K.W. Lee, and U.S. Chung, "Development of pilot-scale electrokinetic remediation technology for uranium removal", Separation and purification technology, 80, pp. 67-72 (2011). https://doi.org/10.1016/j.seppur.2011.04.009
  3. G.Blanchard, M.Maunaye, and G.Martin, "Removal of heavy metals from waters by means of natural zeolites", Water Research, 18(12), pp. 1501-1507 (1984). https://doi.org/10.1016/0043-1354(84)90124-6
  4. Debasish Das, M.K. Sureshkumar, Siddhartha Koley, Nidhi Mithal, and C.G.S. Pillai. "Sorption of uranium on magnetite nanoparticles", J. Radioanal Nucl Chem, 285(3), pp. 447-454 (2010). https://doi.org/10.1007/s10967-010-0627-0
  5. H.M. Park, G.N. Kim, S.S. Kim, W.S. Kim, U.R. Park, and J.K. Moon, "Improvement of pilot-scale electrokinetic remediation technology for uranium removal", J. Korean Radiact. Waste Soc., 11(2), pp. 77-84 (2013). https://doi.org/10.7733/jkrws.2013.11.2.77
  6. W.S. Wan Ngah and M.A.K.M. Hansnfiah, "Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review", Bioresource Technology, 99, pp. 3935-3948 (2008). https://doi.org/10.1016/j.biortech.2007.06.011
  7. Raymond Le Van Mao, Ngoc Thanh Vu, Shuyong Xiao, and Arlene Ramsarn, "Modified Zeolites for the Removal of Calcium and Magnesium from Hard Water", J. MATER. CHEM, 4(7), pp. 1143-1147 (1994). https://doi.org/10.1039/jm9940401143
  8. Lucy Mar Camacho, Shuguang Deng, and Ramona R. Parra, "Uranium removal from groundwater by natural clinoptilolite zeolite: Effects of pH and initial feed concentration", Journal of hazardous Materials, 175, pp. 393-398 (2010). https://doi.org/10.1016/j.jhazmat.2009.10.017
  9. K. Reddy, C.Y. Xu, and S. Chinthamreddy, " Assessment of electrokinetic removal of heavy metals form soil by sequentical extraction analysis", J. Hazard. Mater., B84, pp. 279-296 (2001).
  10. K. Reddy and S. Chinthamreddy, "Sequentially enhanced electrokinetic remediation of heavy metals in low buffering clayey soils", J. Geotech. Geoenviron. Eng., March, pp. 263-277 (2003).
  11. F. Braud, S. Tellier, and M. Astruc, "Modelling of decontamination rate in an electrokinetic soil processing", Int. J. Environ. Anal. Chem., 68, pp. 105-121 (1998).
  12. S.O. Kim, S.H. Moon, and K.W. Kim, "Removal of heavy metals from soils using enhanced electrokinetic soil precessing", Water, Air, Soil Pollution, 125, pp. 259-272 (2001). https://doi.org/10.1023/A:1005283001877
  13. S. Scapolan, E. Ansoborlo, C. Moulin, and C. Madic, "Uranium speciation in biological medium by means of capillary electrophoresis and timeresolved laser induced fluorescence", J. Radioanal. Nucl. Chem., 226, pp. 145-148 (1997). https://doi.org/10.1007/BF02063639
  14. G.E. Collins and Q. Lu, "Microfabricated capillary electrophoresis sensor for uranium (VI)", Anal. Chim. Acta., 436, pp. 181-189 (2001). https://doi.org/10.1016/S0003-2670(01)00903-5
  15. A.P. Shapiro and R.F. Probstein, "Removal of contaminants from saturated clay by electro osmosis", Environ. Sci. Technol. 27, pp. 283-291 (1993). https://doi.org/10.1021/es00039a007
  16. R. Lageman, W. Pool, and G. Seffinga, "Electroreclamatiom: theory andpractice", Chem. Ind., 8, pp. 585-590 (1989).
  17. M.M. Page and C.L. Page, "Electroremediation of contaminated soils", J. Environ. Eng., ASCE 128, pp. 208-219 (2002). https://doi.org/10.1061/(ASCE)0733-9372(2002)128:3(208)
  18. M. Macka, P. Nesterenko, and P.R. Haddad, "Investigation of solute-wall interaction in separation of uranium(VI) and lanthanides by capillary electrophoresis using on-capillary complexation with arsenazo III", J. Microcolumn Sep., 11, pp. 1-9 (1999). https://doi.org/10.1002/(SICI)1520-667X(1999)11:1<1::AID-MCS1>3.0.CO;2-U

Cited by

  1. A Study on the Decontamination Performance of Cesium by Soil Washing Process With Flocculating Agent vol.16, pp.1, 2018, https://doi.org/10.7733/jnfcwt.2018.16.1.41