DOI QR코드

DOI QR Code

Isolation of a Phenol-degrading Bacterial Strain and Biological Treatment of Wastewater Containing Phenols

Phenol 분해균주의 분리 및 페놀함유 폐수의 생물학적 처리

  • Lee, Hyun Don (Department of Evironmental Engineering, Gyeongnam National University of Science and Technology) ;
  • Lee, Myoung Eun (Department of Evironmental Engineering, Gyeongnam National University of Science and Technology) ;
  • Kim, Hyung Gab (Department of Evironmental Engineering, Gyeongnam National University of Science and Technology) ;
  • Suh, Hyun-Hyo (Department of Evironmental Engineering, Gyeongnam National University of Science and Technology)
  • 이현돈 (국립경남과학기술대학교 환경공학과) ;
  • 이명은 (국립경남과학기술대학교 환경공학과) ;
  • 김형갑 (국립경남과학기술대학교 환경공학과) ;
  • 서현효 (국립경남과학기술대학교 환경공학과)
  • Received : 2013.08.26
  • Accepted : 2013.10.14
  • Published : 2013.10.30

Abstract

Aromatic hydrocarbons, such as phenol, have been detected frequently in wastewater, soil, and groundwater because of the extensive use of oil products. Bacterial strains (56 isolates) that degraded phenol were isolated from soil and industrial wastewater contaminated with hydrocarbons. GN13, which showed the best cell growth and phenol degradation, was selected for further analysis. The GN13 isolate was identified as Neisseria sp. based on the results of morphological, physiological, and biochemical taxonomic analyses and designated as Neisseria sp. GN13. The optimum temperature and pH for phenol removal of Neisseria sp. GN13 was $32^{\circ}C$ and 7.0, respectively. The highest cell growth occurred after cultivation for 30 hours in a jar fermentor using optimized medium containing 1,000 mg/l of phenol as the sole carbon source. Phenol was not detected after 27 hours of cultivation. Based on the analysis of catechol dioxygenase, it seemed that catechol was degraded through the meta- and ortho-cleavage pathway. Analysis of the biodegradation of phenol by Neisseria sp. GN13 in artificial wastewater containing phenol showed that the removal rate of phenol was 97% during incubation of 30 hours. The removal rate of total organic carbon (TOC) by Neisseria sp. GN13 and activated sludge was 83% and 78%, respectively. The COD removal rate by Neisseria sp. GN13 from petrochemical wastewater was about 1.3 times higher than that of a control containing only activated sludge.

방향족화합물들로 오염되어있는 토양 및 산업폐수를 포함한 각종 시료로부터 phenol에 분해활성이 높은 56균주를 순수분리 하였으며, 이들 분리 균주 중 균체생육과 phenol 분해활성이 가장 높은 균주인 GN13을 선별하였다. 분리균주 GN13은 형태학적, 생리학적 및 생화학적 특성을 조사한 결과 Neisseria 속 세균과 유사한 것으로 판명되어 최종적으로 Neisseria sp. GN13으로 명명하였다. 분리균주 Neisseria sp. GN13의 균체생육 및 phenol 분해를 위한 최적온도와 최적 pH는 각각 $32^{\circ}C$와 7.0였다. 유일 탄소원으로 phenol 1,000 mg/l를 포함하여 최적화된 배지를 사용한 jar-fermentor 배지에서 배양 30시간에 균체생육이 최대에 이르렀으며 배양 27시간째 거의 모든 phenol이 분해되었으며, catechol deoxygenase 활성측정에 의하여 Neisseria sp. GN13은 meta-와 ortho-pathway를 통하여 catechol 분해가 일어났다. Neisseria sp. GN13은 phenol 함유 인공폐수에서의 phenol 분해율은 배양 30시간 만에 97%의 phenol이 분해되는 것으로 나타났으며, 인공폐수에 대한 Neisseria sp. GN13과 활성슬러지 처리구에서의 TOC 제거효율은 각각 83%와 78%였다. 석유화학폐수에 대한 Neisseria sp. GN13의 COD 제거율은 활성슬러지만을 포함한 대조구보다 약 1.3배 높은 효율을 나타내었다. 이러한 결과로 미루어 분리균주 Neisseria sp. GN13은 phenol을 함유하고 있는 여러 폐수에 효과적으로 적용될 수 있을 것으로 생각된다.

Keywords

References

  1. Aldrich, T. L., Frantz, B., Gill, J. F., Kilbane, J. J. and Chakrabarty, A. M. 1987. Cloning and complete nucleotide sequence determination of the cat B gene encoding cis, cis-muconate lactonizing enzyme. Gene 52, 185-195. https://doi.org/10.1016/0378-1119(87)90045-X
  2. Apajalahti, J. H. A. and Salkinoja-Salonen, M. S. 1986. Degradation of polychlorinated phenols by Rhedococcus chlorophenolicus. Appl Microbiol Biotechnol 25, 62-67.
  3. APHA, AWWA, and WEF. 1992. Standard methods for the examination of water and wastewater. 18th eds., APHA, Washington
  4. Bitzi, U., Egli, T. and Hammer, G. 1991. The biodegradation of mixtures of organic solvents by mixed and monocultures of bacteria. Biotechnol Bioeng 37, 1037-1042. https://doi.org/10.1002/bit.260371108
  5. Gibson, J. M., Thomas, P. S., Barker, J. L., Chandran, S. S., Harrup, M. K., Draths, K. M. and Frost, J. W. 2001. Benzenefree synthesis of phenol. Angew Chem Int 40, 1945-1948. https://doi.org/10.1002/1521-3773(20010518)40:10<1945::AID-ANIE1945>3.0.CO;2-5
  6. Gordon, A. H. and Compbell, W. R. 1975. Substrate inhibition kinetics ; phenol degradation by Pseudomonas putida. Biotech Bioeng 17, 1599-1615. https://doi.org/10.1002/bit.260171105
  7. Haggblom, M. M. 1992. Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Rev 103, 29-72. https://doi.org/10.1111/j.1574-6968.1992.tb05823.x
  8. Hegeman, G. D. 1966. Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida : I. Synthesis of the enzymes by the wild type. J Bacteriol 91, 1140-1154.
  9. Hinteregger, C., Laitner, R., Loidl, M., Ferschl, A. and Streichsbier, F. 1992. Degradation of phenol and phenolic compounds by Pseudomonas putida EKII. Appl Microbiol Biotechnol 37, 252-259.
  10. Japanese Sewage Works Association. 1984. Methods for Sewage Analysis Japanese Sewage Works Association. Tokyo, Japan
  11. Kiyohara, H., Hatta, T., Ogawa , Y., Kakuda, T., Yokoyama, H. and Takizawa, N. 1992. Isolation of Pseudomonas pikettii that degrade 2,4,6-trichlorophenol and their dechlorination of chlrorophenols. Appl Environ Microbiol 58, 1276-1283.
  12. Ko, Y. H., Ha, I. H. and Bae, K. S. 1988. Iolation and Characterization of a Naphtalene Degrading Strain, Pseudomonas putida N3. Korean J Appl Microbiol Biotechnol 16, 199-204.
  13. Lee, C. H., Oh, H. M., Kwon, T. J., Kwon, G. S., Lee, S. G., Suh, H. H. and Yoon, B. D. 1994. Isolation and Characterization of a Phenol-Degrading Strain, Acinetobacter sp. GEM2. Korean J Appl Microbiol Biotechnol 22, 692-699.
  14. Leisinger, T., Cook, A. M., Hutter, R. and Nuesch, J. 1981. Microbial degradation of xenobiotics and recalcitrant compounds. Academic Press. Zurich.
  15. Li, J. K. and Humphrey, A. E. 1989. Kinetics and fluorometric behaviour of a phenol fermentation. Biotechnol Lett 11, 177-182. https://doi.org/10.1007/BF01026052
  16. MacFaddin, J. F. 1984. Biochemical tests for identification for medical bacteria. 2nd eds,. Williams & Wilkins Co., Baltimore, Maryland.
  17. Martin, R. W. 1949. Rapid colorimetric estimation of phenol. Anal Chem 21, 1419-1420. https://doi.org/10.1021/ac60035a038
  18. Masque, C., Nolla, M. and Bordons, A. 1987. Selection and adaptation of a phenol-degrading strain of Pseudomonas. Biotechnol Lett 9, 655-660. https://doi.org/10.1007/BF01033206
  19. Nordlund, J. and Shingler, V. 1990. Nucleotide sequence of the meta-clevage pathway enzyme 2-hydroxymucoic semialdehyde dehydrogenase and 2-hydroxymuconic semialdehyde hydrolase from Psedomonas CF600. Biochem Biophys 1049, 227-320.
  20. Nozaki, M. 1970. Metapyrocatechase (Pseudomanas), Methods in enzymology 17A. Academic Press, New York.
  21. Peter, H. A. S., Nicholas, S. M., Sharpe, M. E. and Holt, J. F. 1986. Bergey's manual of systematic bacteriology, Williams and Wikins Co., Baltimore, Maryland.
  22. Rand, G. H. and Petrocell, S. R. 1985. Fundamentals of aquatic toxicology. Hemisphere Publishing Company. Washington.
  23. Sariaslami, F. S. 2007. Development of a combined biological and chemical process for production of industrial aromatics from renewable resources. Annu Rev Microbiol 61, 51-69. https://doi.org/10.1146/annurev.micro.61.080706.093248
  24. Shingler, V., Powlowski, J. and Marklund, U. 1992. Nucleotide sequence and functional analysis of complete phenol 3,4-dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600. J Bacteriol 174, 711-724.
  25. Tamaoka, K. and Komagata, K. 1984. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125-128. https://doi.org/10.1111/j.1574-6968.1984.tb01388.x

Cited by

  1. Development of Microbial Augmentation for the Treatment of Recalcitrant Industrial Wastewater Containing Chlorinated Organic Compounds vol.24, pp.8, 2014, https://doi.org/10.5352/JLS.2014.24.8.887
  2. Isolation and Characteristics of a Phenol-degrading Bacterium, Rhodococcus pyridinovorans P21 vol.24, pp.9, 2014, https://doi.org/10.5352/JLS.2014.24.9.988