• Title/Summary/Keyword: soil strain

Search Result 1,969, Processing Time 0.028 seconds

Influence of inclusion of geosynthetic layer on response of combined footings on stone column reinforced earth beds

  • Maheshwari, Priti;Khatri, Shubha
    • Geomechanics and Engineering
    • /
    • v.4 no.4
    • /
    • pp.263-279
    • /
    • 2012
  • The present paper deals with the analysis of combined footings resting on geosynthetic reinforced granular fill overlying stone column improved poor soil. An attempt has been made to study the influence of inclusion of geosynthetic layer on the deflection of the footing. The footing has been idealized as a beam having finite flexural rigidity. Granular fill layer has been represented by Pasternak shear layer and stone columns and poor soil have been represented by nonlinear Winkler springs. Nonlinear behavior of granular fill layer, stone columns and the poor soil has been considered by means of hyperbolic stress strain relationships. Governing differential equations for the soil-foundation system have been derived and solution has been obtained employing finite difference scheme by means of iterative Gauss Elimination method. Results of a detailed parametric study have been presented, for a footing supporting typically five columns, in non-dimensional form in respect of deflection with and without geosynthetic inclusion. Geosynthetic layer has been found to significantly reduce the deflection of the footing which has been quantified by means of parametric study.

First Report of Plectosphaerella sinensis Isolated from Soil in Korea

  • Wajihi, Ally Hassan;Choi, Hyo-Won;Lee, Seung-Yeol;Jung, Hee-Young
    • The Korean Journal of Mycology
    • /
    • v.46 no.3
    • /
    • pp.345-351
    • /
    • 2018
  • A fungal isolate denoted NC14-264 was isolated from the soil in Jeongeup, Jeollabuk-do, Korea. Species in genus Plectosphaerella are pathogenic to several plant species, leading to fruit, root, and collar rot and collapse. In this study, a strain NC14-264 belonging to the Plectosphaerella was isolated from the soil and identified. Colonies were moderately grown, reaching 54 mm in diameter on potato dextrose agar, 49 mm on malt extract agar, and 55 mm on oatmeal agar at $25^{\circ}C$ after 10 days of incubation. Most Plectosphaerella species are distinguishable morphologically by irregular chlamydospores and different proportions of phialides and conidia. Based on morphological features and phylogenetic analysis using the internal transcribed spacer region and partial 28S rRNA gene sequences, the isolated fungus was identified as Plectosphaerella sinensis belonging to the Plectosphaerellaceae. This is the first report of P. sinensis in Korea.

Promoted Growth of Maize by the Phosphate Solubilizing Bacteria Isolated from North-east China

  • Wu, Hai-Yan;Wang, Li-Chun;Gao, Xing-Ai;Jin, Rong-De;Fan, Zuo-Wei;Kim, Kil-Yong;Zhao, Lan-Po
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.112-117
    • /
    • 2011
  • A strain of phosphate solubilizing bacterium was isolated from rhizosphere and identified as Burkholderia sp. by 16S-rRNA gene sequence analyses. The bacterium was found to release gluconic acid and the solubilization of hydroxyapatite in the liquid medium by a significant drop in pH to 3.7 from an initial pH 7.0. The soluble-P concentration continuously increased during the incubation periods and the total amount of soluble P released in culture filtrate was detected at 990 mg $L^{-1}$ after 10 days of inoculation. Most promoted maize growth was found in the standard NPK (240-120-120 kg $ha^{-1}$) soil inoculation with Burkholderia sp. (Twenty milliliters/plant, 106 CFU) and also in the absence of Burkholderia sp. inoculation, the soil amended with only 2/3 levels of P gave significant higher plant yield compared to 1/3 levels of P or without P supplementation.

An Experimental Study on Grouting Effect for Ground Reinforcement (지반보강 그라우팅 효과에 관한 실험적 연구)

  • Park, Yong-Won;Lee, Goo-Young;Park, Jong-Ho;Hong, Sung-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.399-406
    • /
    • 2004
  • This paper is experimental study on the effect of improved soil strength which was grouted by pressure grouting method for prevent collapse the tunnel's face during excavate tunnel. This study performs to investigate the proper grouting pressure and grouting method through pressure grouting laboratory model tests using loose dense sandy soil using specially designed and fabricated device($180cm{\times}220cm{\times}300cm$) under changing condition of injection in this test The investigation is carried out through measuring the size and shape of grout bulb, elastic modulus by pressure-meter test Elastic modulus was estimated using relation stress with strain which is result the uni-direction compressive strength test for cured grouted bulb under water during 28days. From these test results, the amount of increased elastic modulus of grouted zone was suggested.

  • PDF

Compressibility and Strength Characteristics of Light-weighted Foam Soil (경량기포혼합토의 압축 및 강도특성 연구)

  • 윤길림;김병탁
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.5-13
    • /
    • 2004
  • Strength and compressibility characteristics of Light-Weighted Foam Soil (LWFS) are experimentally investigated in the paper. LWFS is composed of the dredged soils, cement and air foam to reduce unit-weight and to increase compressive strength. For these purposes, both unconfined compression tests and triaxial compression tests are carried out fer artficially prepared specimens of LWFS with various initial water contents, cement contents, mixing ratio of silty dredged soils and different confining stresses. The experimental results of LWFS indicate that the stress-strain relationship and the compressive strength are strongly influenced by cement contents rather than intial water contents of the edged soils. In this paper, the normalizing scheme considering the ratio of initial water contents, cement contents, and air foam contents has been proposed to evaluate the relationship between compressive strength of LWFS and a normalized factor.

Earthquake Response of Two Adjacent Buildings Founded at Different Depths (기초가 서로 다른 빌딩과 지반의 상호작용에 의한 지진응답 해석)

  • Lee Jong-Seh;Yoon Soon-Jong;Kim Dong-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.433-442
    • /
    • 2004
  • The aim of this paper is to study the interaction between adjacent buildings with different foundation levels under earthquake loading conditions. Buildings and soil are represented by two different models. In the first case, the building itself is modeled with standard frame element, whereas the soil behavior is stimulated by a special grid model. In the second case, the building and soil are represented by plane stress or plane strain elements. The modulus of elasticity of the 9round as well as the varying relations of inertia have a strong influence on the section forces within the buildings. The Interaction between the two buildings is demonstrated and discussed via numerical examples using the proposed method.

Coupled Finite Element Analysis for Semi-implicit Linear and Fully-implicit Nonlinear Scheme in Partially Saturated Porous Medium

  • Kim, Jae-Hong;Regueiro, Richard A.
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.59-65
    • /
    • 2010
  • The paper presents a comparison between a semi-implicit time integration linear finite element implementation and fully-implicit nonlinear Newton-Raphson finite element implementation of a triphasic small strain mixture formulation of an elastic partially saturated porous medium. The pore air phase pressure pa is assumed atmospheric, i.e., $p_a$ = 0, although the formulation and implementation are general to handle increase in pore air pressure as a result of loading, if needed. The solid skeleton phase is assumed linear isotropic elastic and partially saturated 'consolidation' in the presence of surface infiltration and traction is simulated. The verification of the implementation against an analytical solution for partially saturated pore water flow (no deformation) and comparison between the two implementations is presented and the important of the porosity-dependent nature of the partially saturated permeability is assessed on comparison with a commercial code for the partially saturated flow with deformation. As a result, the response of partially saturated permeability subjected to the porosity influences on the saturation of a soil, and the different behaviors of the partially saturated soil between staggered and monolithic coupled programs is worth of attention because the negative pore water pressure in the partially saturated soil depends on the difference.

A study on the Consolidation Characteristics of remolding Marine Clay and Weathered Granite Soil by SCT and CRSC (표준.일정변형률속도 압밀시험을 이용한 해성점토.화강암질 풍화토의 압밀특성에 관한 연구)

  • 기완서;주승완;김선학;심태섭
    • The Journal of Engineering Geology
    • /
    • v.12 no.4
    • /
    • pp.459-469
    • /
    • 2002
  • We have remolded marine clay sample collected along the vertical and horizontal directions and investigated the characteristics of the consolidation constants by SCT and CRSC methods. We have studied also on consolidation chracteristics and application for weathered granite soil using SCT and CRSC methods for undisturbed and disturbed samples. As the result, values of pre-consolidation stress, compression index, excessive pore pressure, pore water pressure ratio of the marine-clay were different due to different test methods(SCT and CRSC) and sampling directions(vortical and horizontal directions). Disturbed and undisturbed samples of the weathered granite soil have showed similar change aspect like marine clay during over-consolidatied and normally consolidatied stages.

One-dimensional nonlinear consolidation behavior of structured soft clay under time-dependent loading

  • Liu, Weizheng;Shi, Zhiguo;Zhang, Junhui;Zhang, Dingwen
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.299-313
    • /
    • 2019
  • This research investigated the nonlinear compressibility, permeability, the yielding due to structural degradation and their effects on consolidation behavior of structured soft soils. Based on oedometer and hydraulic conductivity test results of natural and reconstituted soft clays, linear log (1+e) ~ $log\;{\sigma}^{\prime}$ and log (1+e) ~ $log\;k_v$ relationships were developed to capture the variations in compressibility and permeability, and the yield stress ratio (YSR) was introduced to characterize the soil structure of natural soft clay. Semi-analytical solutions for one-dimensional consolidation of soft clay under time-dependent loading incorporating the effects of soil nonlinearity and soil structure were proposed. The semi-analytical solutions were verified against field measurements of a well-documented test embankment and they can give better accuracy in prediction of excess pore pressure compared to the predictions using the existing analytical solutions. Additionally, parametric studies were conducted to analyze the effects of YSR, compression index (${\lambda}_r$ and ${\lambda}_c$), and permeability index (${\eta}_k$) on the consolidation behavior of structured soft clays. The magnitude of the difference between degree of consolidation based on excess pore pressure ($U_p$) and that based on strain ($U_s$) depends on YSR. The parameter ${\lambda}_c/{\eta}_k$ plays a significant role in predicting consolidation behavior.

Study of geotechnical properties of a gypsiferous soil treated with lime and silica fume

  • Moayyeri, Neda;Oulapour, Masoud;Haghighi, Ali
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.195-206
    • /
    • 2019
  • The gypsiferous soils are significantly sensitive to moisture and the water has a severe destructive effect on them. Therefore, the effect of lime and silica fume addition on their mechanical properties, when subjected to water, is investigated. Gypsiferous soil specimens were mixed with 1, 2 and 3% lime and 1, 3, 5 and 7% silica fume, in terms of the dry weight of soil. The specimens were mixed at optimum moisture content and cured for 24 hours, 7 and 28 days. 86 specimens in the sizes of unconfined compression strength test mold were prepared to perform unconfined compressive strength and durability tests. The results proved that adding even 1% of each of these additives can lead to a 15 times increase in unconfined compressive strength, compared with untreated specimen, and this increases as the curing time is prolonged. Also, after soaking, the compressive strength of the specimens stabilized with 2 and 3% lime plus different percentages of silica fume was considerably higher than before soaking. The durability of the treated specimens increased significantly after soaking. Direct shear tests showed that lime treatment is more efficient than silica fume treatment. Moreover, it is concluded that the initial tangent modulus and the strain at failure increased as the normal stress of the test was increased. Also, the higher lime contents, up to certain limits, increase the shear strength. Therefore, simultaneous use of lime and silica fume is recommended to improve the geotechnical properties of gypsiferous soils.