DOI QR코드

DOI QR Code

One-dimensional nonlinear consolidation behavior of structured soft clay under time-dependent loading

  • Liu, Weizheng (School of Civil Engineering, Central South University) ;
  • Shi, Zhiguo (School of Civil Engineering, Central South University) ;
  • Zhang, Junhui (National Engineering Laboratory of Highway Maintenance Technology, Changsha University of Science & Technology) ;
  • Zhang, Dingwen (School of Transportation, Southeast University)
  • Received : 2018.07.21
  • Accepted : 2019.06.06
  • Published : 2019.06.30

Abstract

This research investigated the nonlinear compressibility, permeability, the yielding due to structural degradation and their effects on consolidation behavior of structured soft soils. Based on oedometer and hydraulic conductivity test results of natural and reconstituted soft clays, linear log (1+e) ~ $log\;{\sigma}^{\prime}$ and log (1+e) ~ $log\;k_v$ relationships were developed to capture the variations in compressibility and permeability, and the yield stress ratio (YSR) was introduced to characterize the soil structure of natural soft clay. Semi-analytical solutions for one-dimensional consolidation of soft clay under time-dependent loading incorporating the effects of soil nonlinearity and soil structure were proposed. The semi-analytical solutions were verified against field measurements of a well-documented test embankment and they can give better accuracy in prediction of excess pore pressure compared to the predictions using the existing analytical solutions. Additionally, parametric studies were conducted to analyze the effects of YSR, compression index (${\lambda}_r$ and ${\lambda}_c$), and permeability index (${\eta}_k$) on the consolidation behavior of structured soft clays. The magnitude of the difference between degree of consolidation based on excess pore pressure ($U_p$) and that based on strain ($U_s$) depends on YSR. The parameter ${\lambda}_c/{\eta}_k$ plays a significant role in predicting consolidation behavior.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, South University

References

  1. Borja, R.I. and Choo, J. (2016), "Cam-Clay plasticity, Part VIII: A constitutive framework for porous materials with evolving internal structure", Comput. Meth. Appl. Mech. Eng., 309, 653-679. https://doi.org/10.1016/j.cma.2016.06.016.
  2. Burland, J.B. (1990), "On the compressibility and shear strength of natural clays", Geotechnique, 40(3), 329-378. https://doi.org/10.1680/geot.1990.40.3.329.
  3. Butterfield, R. (1979), "A natural compression law for soils", Geotechnique, 29(4), 469-480. https://doi.org/10.1680/geot.1979.29.4.469
  4. Chai, J.C., Miura, N., Zhu, H.H. and Yudhbir (2004), "Compression and consolidation characteristics of structured natural clay", Can. Geotech. J., 41(6), 1250-1258. https://doi.org/10.1139/t04-056.
  5. Chen, Y.M., Tang, X.W. and Wang, J. (2004), "An analytical solution of one dimensional consolidation for soft sensitive soil ground", Int. J. Numer. Anal. Meth. Geomech., 28(9), 919-930. https://doi.org/10.1002/nag.353.
  6. Conte, E. and Troncone, A. (2007), "Nonlinear consolidation of thin layers subjected to time-dependent loading", Can. Geotech. J., 44(6), 717-725. https://doi.org/10.1139/t07-015.
  7. Cotecchia, F. and Chandler, R.J. (2000), "A general framework for the mechanical behaviour of clays", Geotechnique, 50(4), 431-447. https://doi.org/10.1680/geot.2000.50.4.431
  8. Hong, Z.S., Negami, T. and Guo, H.L. (2004), "Gravitational sedimentation behavior of sensitive marine Ariake clays", Mar. Georesour. Geotechnol., 22(1-2), 49-63. https://doi.org/10.1080/10641190490467765.
  9. Hong, Z.S. and Han, J. (2007), "Evaluation of sample quality of sensitive clay using intrinsic compression concept", J. Geotech. Geoenviron. Eng., 133(1), 83-90. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:1(83).
  10. Horpibulsuk, S., Shibuya, S., Fuenkajorn, K. and Katkan, W. (2007), "Assessment of engineering properties of Bangkok clay", Can. Geotech. J., 44(2), 173-187. https://doi.org/10.1139/t06-101.
  11. Hu, A.F., Xia, C.Q., Wu, H., Xie, K.H. and Yan, L.H. (2017), "A study on one-dimensional consolidation of layered structured aquitard soils in a leakage system", Mar. Georesour. Geotechnol., 35(3), 318-329. https://doi.org/10.1080/1064119X.2016.1164264.
  12. Kabbaj, M., Tavenas, F. and Leroueil, S. (1988), "In situ and laboratory stress-strain relationships", Geotechnique, 38(1), 83-100. https://doi.org/10.1680/geot.1988.38.1.83.
  13. Kim, Y.T. and Leroueil, S. (2001), "Modeling the viscoplastic behaviour of clays during consolidation application to Berthierville clay in both laboratory and field conditions", Can. Geotech. J., 38(3), 484-497. https://doi.org/10.1139/t00-108.
  14. Lapierre, C., Leroueil, S. and Locat, J. (1990), "Mercury intrusion and permeability of Louiseville clay", Can. Geotech. J., 27(5), 568-579. https://doi.org/10.1139/t90-090.
  15. Leroueil, S., Diene, M., Tavenas, F., Kabbaj, M. and Rochelle, P.L. (1988), "Direct determination of permeability of clay under embankments", J. Geotech. Eng., 114(6), 645-657. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:6(645).
  16. Leroueil, S. and Vaughan, P.R. (1990), "The general and congruent effects of structure in natural soils and weak rocks", Geotechnique, 40(3), 467-488. https://doi.org/10.1680/geot.1990.40.3.467.
  17. Liu, J.C. and Griffiths, D.V. (2015), "A general solution for 1D consolidation induced by depth-and time-dependent changes in stress", Geotechnique, 65(1), 66-72. https://doi.org/10.1680/geot.14.P077.
  18. Liu, M.D., Carter, J.P. and Desai C.S. (2003), "Modeling compression behavior of structured geomaterials", Int. J. Geomech., 3(2), 191-204. https://doi.org/10.1061/(ASCE)1532-3641(2003)3:2(191).
  19. Liu, W.Z. (2011), "In-situ mechanical behavior analysis of saturated clay and engineering application", Ph.D. Dissertation, Southeast University, Nanjing, China.
  20. Low, H.E., Phoon, K.K., Tan, T.S. and Leroueil, S. (2008), "Effect of soil microstructure on the compressibility of natural Singapore marine clay", Can. Geotech. J., 45(2), 161-176. https://doi.org/10.1139/T07-075.
  21. Mesri, G. and Olson, R.E. (1971), "Mechanisms controlling the permeability of clays", Clay. Clay Miner., 19(3), 151-158. https://doi.org/10.1346/CCMN.1971.0190303.
  22. Mesri, G., Rokhsar, A. and Bohor, B.F. (1975), "Composition and compressibility of typical samples of Mexico City clay", Geotechnique, 25(3), 527-554. https://doi.org/10.1680/geot.1975.25.3.527.
  23. Nash, D., Sills, G.C. and Davison, L.R. (1992), "One-dimensional consolidation testing of soft clay from Bothkennar", Geotechnique, 42(2), 241-256. https://doi.org/10.1680/geot.1992.42.2.241.
  24. Ozelim, L.C.D.M., de Carvalho, J.C., Cavalcante, A.L.B., da Silva, J.P. and Muneton, C.M.G. (2014), "Novel approach to consolidation theory of structured and collapsible soils", Int. J. Geomech., 15(4), 1-11. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000409.
  25. Razouki, S.S. and Schanz, T. (2011), "One-dimensional consolidation under haversine repeated loading with rest period", Acta Geotechnica, 6(1), 13-20. https://doi.org/10.1007/s11440-010-0132-1.
  26. Skempton, A.W. (1970), "The consolidation of clays by gravitational compaction", Quart. J. Geol. Soc., 125(1-4), 373-411. https://doi.org/10.1144/gsjgs.125.1.0373.
  27. Tavenas, F., Leblond, P., Jean, P. and Leroueil, S. (1983), "The permeability of natural soft clays. Part II: Permeability characteristics", Can. Geotech. J., 20(4), 645-660. https://doi.org/10.1139/t83-073
  28. Xie, K.H. and Pan, Q.Y. (1995), "Theory of one-dimensional consolidation of layered soils under variable loading", Chin. J. Geotech. Eng., 17(5), 80-85.
  29. Xie, K.H., Xia, C.Q., An, R., Hu, A.F. and Zhang, W.P. (2016), "A study on the one-dimensional consolidation of double-layered structured soils", Comput. Geotech., 73, 189-198. https://doi.org/10.1016/j.compgeo.2015.12.007.
  30. Xu, C.J., Chen, Q.Z., Liang, L.J. and Fan, X.Z. (2017), "Analysis of consolidation of a soil layer with depth-dependent parameters under time-dependent loadings", Eur. J. Environ. Civ. Eng., 6(sup1), 1-13. https://doi.org/10.1080/19648189.2017.1385539.
  31. Zhang, S., Li, H.C. and Teng, J.D. (2016), "A new constitutive model for structures soil", Geomech. Eng., 11(5), 725-738. http://dx.doi.org/10.12989/gae.2016.11.5.725.
  32. Zhang, J.H., Cen, G.M., Liu, W.Z. and Wu, H.X. (2015), "One dimensional consolidation of double-layered foundation with depth-dependent initial excess pore pressure and additional stress", Adv. Mater. Sci. Eng., 4, 1-13. http://dx.doi.org/10.1155/2015/618717.
  33. Zeng, L.L., Hong, Z.S., Cai, Y.Q. and Han, J. (2011), "Change of hydraulic conductivity during compression of undisturbed and remolded clays", Appl. Clay Sci., 51(1-2), 86-93. https://doi.org/10.1016/j.clay.2010.11.005.