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ABSTRACT

The paper presents a comparison between a semi-implicit time integration linear finite element implementation and fully-implicit nonlinear 
Newton-Raphson finite element implementation of a triphasic small strain mixture formulation of an elastic partially saturated porous medium. 
The pore air phase pressure pa is assumed atmospheric, i.e., pa = 0, although the formulation and implementation are general to handle increase 
in pore air pressure as a result of loading, if needed. The solid skeleton phase is assumed linear isotropic elastic and partially saturated 
‘consolidation’ in the presence of surface infiltration and traction is simulated. The verification of the implementation against an analytical 
solution for partially saturated pore water flow (no deformation) and comparison between the two implementations is presented and the 
important of the porosity-dependent nature of the partially saturated permeability is assessed on comparison with a commercial code for the 
partially saturated flow with deformation. As a result, the response of partially saturated permeability subjected to the porosity influences on 
the saturation of a soil, and the different behaviors of the partially saturated soil between staggered and monolithic coupled programs is worth 
of attention because the negative pore water pressure in the partially saturated soil depends on the difference.
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1. Introduction

A semi-implicit integration scheme leads to a linear solution in 
time, assuming linear isotropic elasticity for the solid skeleton 
phase constitutive behavior, and thus is faster computationally 
and is also easier to implement. A fully-implicit (Backward 
Euler) time integration leads to a set of nonlinear coupled matrix 
equations that are solved using Newton-Raphson, and is shown to 
be more stable for larger time steps, yet slower computationally. 

It is assumed the pore air pressure is approximately zero 
(atmospheric) pa = 0 during loading, although when a surface 
traction is applied to the ground surface, pore air pressure could 
play a role (Schrefler and Scotta, 2001; Laloui et al., 2003). We 
eventually are interested in analyzing the solid soil skeleton 
deformation and stress coupled to the pore air and water phase 
pressures to determine potential onset and progressive instability 
in partially saturated slopes exposed to rainfall infiltration, or 
other initial boundary value problems involving partially 
saturated soils.

A coupled hydro-mechanical behavior in triphasic mixture 
depends on soil hydraulic properties and shear strength properties 

affecting the stability of partially saturated slopes. Thus stress 
changes due to permeability function modify the seepage process 
because soil hydraulic properties such as porosity, partially 
saturated permeability and water storage capacity are affected by 
the changes in stresses (Zhang et al., 2005). 

The paper organizes the coupled balance equations, constitutive 
models, weak form, matrix finite element equations, semi-implicit 
and fully-implicit nonlinear solution, numerical examples and 
comparisons with a commercial code for partially saturated 
porous medium. The good agreement between the obtained 
results and those from the literature (Srivastava and Yeh, 1991) 
conforms the reliability and the accuracy of the proposed model. 
Finally, the seepage and flow processes in a deformable porous 
medium with an applied load is solved and results are illustrated. 
The comparison of the staggered and monolithic coupled 
solutions allows to appreciate the influence of the difference 
between staggered and monolithically coupled anlayses. 

2. Balance equations and constitutive equations

Mixture theory (Coussy, 2004; de Boer, 2005) starts with the 
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Fig. 1. Mixture theory and solid phase control space for motion 

of triphasic continuum

concept of volume fraction,    , where volume 
fraction of solid ns, water nw, and air na for general heterogeneous 
spatial distributions of volume fractions is defined as

 

                                                                              (1)

where,  is the differential volume of constituent   , 
and dv is the total differential volume (because we assume small 
deformations, currently there is no distinction between reference 
and current configurations). The porosity is  . Another 
tenet of mixture theory is to follow the motion of the solid phase, 
and represent the motion of water and air phases with respect to 
the solid phase motion, as illustrated in Figure 1. Note in Figure 1 
that because the control space is that of the solid phase motion 
χs(Xs), more than one material point for the liquid (Xl, Yl) and gas 
(Xg, Yg) phases can flow in and out (by motions χl and χg) of the 
position held by the solid phase material point Xs. This is classical 
mixture theory (Coussy, 2004; de Boer, 2005). 

Following the formulation in (Borja, 2004), we can write the 
balance of linear momentum for the mixture, and balance of mass 
of the water phase as

                                        (2)




 

                    (3)

where the total stress is written in terms of the effective stress ′  
(positive in tension) as ′ , and the degree of 
saturation, S, is defined as the classical form of van Genuchten 
(1980),

                                          (4)

 





 






                                  (5)

where Se is the effective degree of saturation, Sr is the residual 
degree of saturation, pw is the pore water pressure (positive in 
compression), and a, n, and m are curve fitting parameters of the 
soil water characteristic curve (SWCC). The mass density in 
terms of the partial mass densities     ,   is the 
gravity acceleration vector,     is the superficial 
Darcy velocity of water with  the true velocity of water. The 
constitutive equations are linear isotropic elasticity for the 
effective stress, and generalized Darcy’s law (van Genuchten, 
1980; Coussy, 2004) for the Darcy velocity of water, written as 

′                                      (6)



 ∇ 

                 (7)
where   ⊗, the Lamé parameters  and , 
 ∇ is the strain,  is the partially saturated 
permeability, and  is the real mass density of water. The 
permeability is written as

 


  

                      (8)

  
                   (9)

where  is the relative permeability for a partially saturated soil, 
l is a geometry parameter of dimension length, and  is the 
dynamic viscosity of water. 

3. Weak form and nonlinear matrix finite element 

equations

We assume the whole domain of the body    is partially 
saturated. Applying the method of weighted residuals (Hughes, 
1987), we obtain the coupled nonlinear weak form of the balance 
equations as 



∇ ′ 






             (10)









 




∇

 



  (11)

where   is the weighting function for the displacement ,   is 
the traction,  is the weighting function for the pore water 
pressure , and   is the water seepage positive inward on the 
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Fig. 2. Initial condition and three mixed-formulation element mesh

boundary. Assuming a mixed finite element formulation as 
indicated by the elements in the example mesh in Figure 2, the 
discretized displacement   is interpolated biquadratically (solid 
nodes in Figure 2), and the pore water pressure   bilinearly 
(open circle nodes in Figure 2). 

This leads to a stable spatial integration of the finite element 
matrix equations, in particular in the nearly incompressible 
regime (undrained) (Hughes, 1987). Introducing the shape 
functions, and expressing in matrix form (Hughes, 1987), we may 
write the coupled nonlinear finite element form as

 



∧
  

    
        (12)

 



∧
  




  



    

 (13)

where 
 



∧  is the element assembly operator for element e over 

number of elements ,  is the element nodal weighting 
function values for  ,   is the element nodal weighting 
function values for  , both of which are arbitrary except where 
they are zero at the boundaries with essential boundary 
conditions,   is the element nodal displacement vector,   is the 
element nodal pore water pressure vector. The internal and 
external element force vectors, and element stiffness matrices are
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where in general the effective stress governing the solid phase 
constitutive behavior is a function of displacement  
(deformation) and pore water pressure   (negative suction), 
where we will assume here it is only a function of displacement 
(for linear elasticity).    is the strain-displacement matrix for 
 ,    is a divergence strain-displacement matrix,    is the 
shape function matrix for  ,   is the strain-displacement 
matrix for  ,   is the shape function matrix for  . 

After applying boundary conditions, and assembling the finite 
element equations, the matrix form results as the coupled 
nonlinear parabolic first order ordinary differential equation to 
solve 

                   (21)

where








 












  



  

   





  





 
 






  







 





For fully-implicit time integration using Backward Euler 
(Hughes, 1987), we have the coupled nonlinear matrix system of 
equations to solve via Newton-Raphson 

 
 

                      (22)

where the equation is evaluated at current time  for 
linearization to solve by Newton-Raphson. A semi-implicit time 
integration is written as 

  
                  (23)
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Table 1. Material properties of analytical solution
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Fig. 3. Fully-implicit nonlinear solution with =1hr 
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Fig. 4. Semi-implicit linear solution with =1hr

where   ≈. Each of these equations is 
solved for the examples in the next section.

4. Verification for transient partially saturated flow

   The first example is a verification of the numerical finite 
element implementation and time integration schemes (semi-
implicit versus fully-implicit). To verify, we take the analytical 
solution of (Srivastava and Yeh, 1991), for water flow through 
partially saturated porous media with water table pw = 0 at z = 0, 
and infiltration seepage Sw at z = 1m (Figure 2). After verification, 
and comparison between semi-implicit linear and fully-implicit 
nonlinear solution methods, a top traction (Figure 2) is applied to 
simulate change in pw and downward displacement.

   For verification, the constitutive equations for the water 
phase are modified slightly as follows (Srivastava and Yeh 1991)

 


                                   (24)

  

                  (25)

where Ks is the saturated permeability,  is the unit weight of 
water,   is a parameter,  is the residual volume fraction of 
water, and  is the saturated volume fraction of water. Note that 
in (Srivastava and Yeh, 1991) they call their variable   is the 
“moisture content,” which we refer to as the volume fraction of 
water . These parameters are shown in Table 1

The initial water infiltration seepage is  at zero time (t = 0) 
and the final (t > 0) water infiltration seepage   = 9. The 
residual degree of saturation   is equal to zero (i.e., Se = S) and 
 = 9800N/m3. The simulation time is 100 hrs. Figure 2 shows 
the three element mesh with height 1m (or 3m) with initial and 
boundary conditions for partially saturated flow problem 
(comparison with analytical solution) and the height 3m is for 
comparison with commercial code (Seep/w-Sigma/W). All 
simulations are conducted in plane strain condition (essentially 1 
dimensional for the flow problem of (Srivastava and Yeh, 1991), 
but when the traction is applied in the next example, horizontal 
stress develops).

 The results of our fully-implicit nonlinear and semi-implicit 
linear finite element solutions are shown in Figures 3 and 4, 
respectively for a constant time increment of  = 1hr. The node 
number 1, 7, 13 refer, respectively, to pore water pressure nodes 
on the left hand side of the mesh (open circle nodes) from top, 
middle, to lowest (the bottom pore water pressure nodes have pw 
= 0). The results compare well with the analytical solution (‘x’ 
mark in figures) of (Srivastava and Yeh, 1991). 

The analytical solution is not replicated exactly in closed form 
in this paper, but the negative pore water pressure values are 
calculated from the negative water pressure head  values from 

Figure 1(a) of Srivastava and Yeh(1991)’s paper  , and 
plotted against our finite element solution here. You can see the 
fully-implicit nonlinear solution in Figure 3 is slightly more 
accurate (for  < 0.5×105) than the semi-implicit linear solution 
in Figure 4. The difference becomes unnoticeable as the time 
increment is made smaller →0.
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Fig. 5. Fully-implicit nonlinear solution with =10hr
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Fig. 6. Semi-implicit linear solution with =10hr

Table 2. Material properties

     

29×106 Pa 7×106 Pa 0.42 1×106 Pa 5


Fig. 7.  profile regarding a traction with =0.05hr

To compare the two solution methods, the time increment is 
increased to  = 10hr in Figures 5 and 6. Beginnings of an 
oscillation are apparent for the semi-implicit linear method in 
Figure 6, but it remains stable in the steady-state. For 
fully-implicit nonlinear, in Figure 5, the solution is smoother. 
Comparing CPU times, for  = 10hr, it took 9.3 seconds to run 
the fully-implicit nonlinear solution and 6.6 seconds to run the 
semi-implicit linear solution, and for  = 1hr, it took 28.6 
seconds to run the fully-implicit nonlinear solution and 8.2 
seconds to run the semi-implicit linear solution. 

In general, for smaller time steps, like those needed to resolve 
a sharp ramp in traction (next example), the semi-implicit linear 
method is just as accurate as the fully-implicit nonlinear method, 
but approximately three times as fast. When accounting for 
elasto-plasticity through the effective stress ′    , a 
nonlinear solution will be required, and thus it remains to be seen 
whether a semi-implicit nonlinear solution method will be more 
efficient computationally than a fully-implicit nonlinear solution. 
But this study presents nonlinear elasticity solution for coupled 
finite element implementation accounting both pore water 
pressure and traction (external loading) simultaneously. 

5. Coupled finite element implementation in 

deformable soil

The next example considers an application of traction  , as 
depicted in Figure 2. The additional parameters that need to be 
defined are in Table 2.

The traction is ramped up over 6min, with total simulation time 
of about 10hrs. Because the time step must be equal to or smaller 
than 6min to resolve the ramp up of  , there is little difference in 
results between semi-implicit linear and fully-implicit nonlinear 
solution (we do not use adaptive time-stepping). Thus, we use 
semi-implicit linear because it is faster. The various  with and 
without traction applied is shown in Figure 7. The node number 1, 
7, and 13 are the same nodes with the flow problem in the 
previous example (e.g., Figure 3). Figure 7 shows that  
increases upon application of  , then decreases as the infiltration 
water seepage   continues to increase the volume fraction of 
water . 



– 64 –

Jaehong Kim and Richard A. Regueiro

Vol.1 No.1 / October 2010

Fig. 8. Displacement at ground surface with traction

Fig. 9. Distribution of  and displacement by traction in defor-

mable soil

The displacement in Figure 8 shows that without traction there 
is a small displacement as a result of gravity, while with it there is 
no noticeable consolidation, although it does increase slightly 
(becomes more negative) as the excess  is dissipated. There 
could be a build up and dissipation of excess pore air pressure  
during application of the ground surface traction  , but currently 
 = 0 is assumed. The formulation can be extended to solve for  
as a separate nodal degree of freedom (Schrefler and Scotta, 
2001; Laloui et al., 2003).

In general, many researchers and commercial codes have been 
used van Genuchten(1980) and Fredlund & Xing(1994)’s 
functions to predict partially saturated permeability functions. 
van Genuchten method of Eq.(26) is the closed form equation to 
describe the hydraulic conductivity of a soil as a function of soil 
suction, and Fredlund & Xing’s method of Eq.(27) develops the 
equation by integrating along the entire curve of the volumetric 
water content function.

 
 



  


                                  (26)

 











′  


 








′  

                (27)

where Ks is saturated hydraulic conductivity, a, n, m are curve 
fitting parameters, s is soil suction,  is the volumetric water 
content, e is natural number (2.71828), y is a dummy variable of 
integration representing the logarithm of negative pore water 
pressure and i, j, N are indices for integration. Both hydraulic 
conductivities are the function of soil suction or volumetric water 
content, but these do not consider the porosity of soil. 

In Figure 9, the pore water pressures at 3, 2, 1m are the results 
from the same nodes of previous numerical examples. In order to 
compare the pore water pressure (or matric suction) in 
deformable soil column, Sigma/W is used together with Seep/W 
to perform a staggered coupled consolidation analysis in the mesh 
(3m height) as shown in Figure 2. The commercial code 
(Geo-slope, 2007) used the partially saturated permeability of 
van Genuchten method in Eq.(26). Our monolithically coupled 
code used the partially saturated permeability of Eqs.(8) and (9) 
considering dependence on porosity as well as matric suction. It 
considers that solid skeleton’s behavior by external loading 
influences partially saturated permeability in each time step. The 
effect of porosity produced a small difference of pore water 
pressure according to the passage of time as shown in Figure 9. 
The analysis of coupled Seep/W and Sigma/W is performed in a 
staggered manner separately. 

Staggered coupled analysis estimates individually for seepage 
and stress analysis, namely, after completing seepage and flow 
process in rigid soil body in Seep/W, Sigma/W is formulated for 
soil deformation using results obtained from Seep/W. However, 
monolithic coupled analysis can describe that pore water pressure 
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change due to seepage leads to changes in stresses and to 
deformation of a soil. Similarly, stress changes modify the 
seepage process since soil hydraulic properties such as porosity, 
permeability and water storage capacity are affected by the 
changes in stresses. Hence a monolithically coupled hydro-
mechanical model is preferred to analyze the behavior and 
stability of a partially saturated soil subjected to external loads, 
especially rainfall. As a result, the seepage and stress-deformation 
problems should be linked simultaneously.

 When traction is applied at the first time step, water flow 
causes a compacted soil obtained from Sigma/W to be saturated 
quickly. Both displacements on ground surface is similar because 
of using the same elastic moduli. 

6. Conclusions

For a general nonlinear finite element formulation and 
implementation at small strain, the main contribution of this 
paper is to compare a fully-implicit nonlinear finite element 
solution to a semi-implicit linear finite element solution. It was 
found that for large time steps, the fully-implicit scheme is more 
stable and accurate, but for practical nonlinear finite element 
analyses requiring smaller time increments to resolve the solution 
more accurately, a semi-implicit linear scheme is more 
computationally efficient.

The other contribution is to implement the partially saturated 
permeability with the function of degree of saturation S and 
porosity n for seepage analysis in a deformable soil. When both 
seepage and traction are applied to the top surface of soil column, 
the seepage and flow processes in a deformable soil are 
influenced by solid skeleton deformations. Similarly, stress 
changes will modify the seepage process since soil hydraulic 
properties such as porosity and permeability are affected by the 
changes in stresses. By identifying difference between results of 
both codes (Seep/W-Sigma/W and my own code), it essentially 
revealed that the difference of analyses through flow-deformation 

mechanism might play an important role on hydraulic pattern of 
partially saturated soils.
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