• Title/Summary/Keyword: soil modeling

Search Result 786, Processing Time 0.03 seconds

An Approach for Solid Modeling and Equipment Fleet Management Towards Low-Carbon Earthwork (저탄소 토공을 위한 솔리드 모델링 및 건설장비 플릿관리 방법론)

  • Kim, Sung-Keun;Kim, Gyu-Yeon;Park, Ju-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.501-514
    • /
    • 2015
  • Earthwork is a basic operation for all forms of civil works and affects construction time, cost and productivity. It is a mechanized operation that needs various construction equipment as a group and uses a lot of fuel for construction equipment. But, the problem is that earthwork operation is usually performed by equipment operator's heuristic and intuition, which can cause low productivity, high fuel consumption, and high carbon dioxide emission. As one of solutions for this problem, the fleet management system for construction equipment is suggested for effective earthwork planning, optimal equipment allocation, efficient machine operation, fast information exchange, and so forth. The purpose of this research is to suggest core methods for developing the equipment fleet management system. The methods include 3D solid parametric model generation, soil distribution using Cctree data structure, equipment fleet construction and equipment fleet operation. A simulation test is performed to verify the effectiveness of the equipment fleet management system in terms of equipment operating ratio, fuel usage, and $CO_2$ emission.

Analysis of Water Quality on Distributed Watershed using Topographic Data (공간정보를 이용한 분포형 유역 수질 모의)

  • Ryu, Byong-Ro;Jung, Seung-Kwon;Jun, Kye-Won
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.11
    • /
    • pp.897-913
    • /
    • 2004
  • There has been continuous efforts to manage the water resources for the required water quality criterion at river channel in Korea. However, we could not obtain the partial improvement only for the point source pollutant such as, wastewater from urban and industrial site through the water quality management. Therefore, it is strongly needed that the Best Management Practice(BMP) throughout the river basin for water quality management including non-point source pollutant loads. This problem should be resolved by recognizing the non-point source pollutant loads from upstream river basin to the outlet depends on the land use and soil type characteristic of the river basin using the computer simulation by distributed parameter model based on the detailed investigation and the application of Geographic Information System(GIS). Used in this study, Annualized Agricultural Non-Point Source Pollution (AnnAGNPS) model is a tool suitable for long term evaluation of the effects of BMPs and can be used for un gauged watershed simulation of runoff and sediment yield. Now applications of model are in progress. So we just describe the limited result. However If well have done modeling and have investigated of propriety of model, well achieve our final goal of this study.

Chemical Characteristics and Source Apportionment ofPM2.5 in Seoul Metropolitan Area in 2010 (2010년도 서울시 대기 중 PM2.5의 성분특성 및 발생원 추정에 관한 연구)

  • Moon, Kwang-Joo;Park, Seung-Myung;Park, Jong-Sung;Song, In-Ho;Jang, Sung-Ki;Kim, Jong-Chun;Lee, Seok-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.711-722
    • /
    • 2011
  • This study is aimed to estimate the $PM_{2.5}$ source apportionment at Seoul intensive monitoring site located in Seoul metropolitan area. Time-resolved chemical compositions of $PM_{2.5}$ are measured in real time using ambient ion monitor, semi-continuous carbon monitor, and on-line XRF at Seoul intensive monitoring site in 2010. The mass concentration of $PM_{2.5}$ was simultaneously monitored with eight ionic species (${SO_4}^{2-}$, $NO_3{^-}$, $Cl^-$, $NH_4{^+}$, $Na^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$), two carbonaceous species (OC and EC), and fourteen elements (Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Pb) in 1-hr interval. The data sets were then analyzed using EPA PMF version 3 to identify sources and contributions to $PM_{2.5}$ mass. EPA PMF modeling identified eight PM2.5 sources, including soil dust, secondary sulfate, secondary nitrate, motor vehicle, coal combustion, oil combustion, biomass burning, and municipal incineration. This study found that the average $PM_{2.5}$ mass was apportioned to anthropogenic sources such as motor vehicle, fuel combustion, and biomass burning (61%) and secondary aerosols, including sulfate and nitrate (38%).

Development of a Chinese cabbage model using Microsoft Excel/VBA (엑셀/VBA를 이용한 배추 모형 제작)

  • Moon, Kyung Hwan;Song, Eun Young;Wi, Seung Hwan;Oh, Sooja
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.2
    • /
    • pp.228-232
    • /
    • 2018
  • Process-based crop models have been used to assess the impact of climate change on crop production. These models are implemented in procedural or object oriented computer programming languages including FORTRAN, C++, Delphi, Java, which have a stiff learning curve. The requirement for a high level of computer programming is one of barriers for efforts to develop and improve crop models based on biophysical process. In this study, we attempted to develop a Chinese cabbage model using Microsoft Excel with Visual Basic for Application (VBA), which would be easy enough for most agricultural scientists to develop a simple model for crop growth simulation. Results from Soil-Plant-Atmosphere-Research (SPAR) experiments under six temperature conditions were used to determine parameters of the Chinese cabbage model. During a plant growing season in SPAR chambers, numbers of leaves, leaf areas, growth rate of plants were measured six times. Leaf photosynthesis was also measured using LI-6400 Potable Photosynthesis System. Farquhar, von Caemmerer, and Berry (FvCB) model was used to simulate a leaf-level photosynthesis process. A sun/shade model was used to scale up to canopy-level photosynthesis. An Excel add-in, which is a small VBA program to assist crop modeling, was used to implement a Chinese cabbage model under the environment of Excel organizing all of equations into a single set of crop model. The model was able to simulate hourly changes in photosynthesis, growth rate, and other physiological variables using meteorological input data. Estimates and measurements of dry weight obtained from six SPAR chambers were linearly related ($R^2=0.985$). This result indicated that the Excel/VBA can be widely used for many crop scientists to develop crop models.

Groundwater Recharge Estimation for the Gyeongan-cheon Watershed with MIKE SHE Modeling System (MIKE SHE 모형을 이용한 경안천 유역의 지하수 함양량 산정)

  • Kim, Chul-Gyum;Kim, Hyeon-Jun;Jang, Cheol-Hee;Im, Sang-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.6 s.179
    • /
    • pp.459-468
    • /
    • 2007
  • To estimate the groundwater recharge, the fully distributed parameter based model, MIKE SHE was applied to the Gyeongan-cheon watershed which is one of the tributaries of Han River Basin, and covers approximately $260km^2$ with about 49 km main stream length. To set up the model, spatial data such as topography, land use, soil, and meteorological data were compiled, and grid size of 200m was applied considering computer ability and reliability of the results. The model was calibrated and validated using a split sample procedure against 4-year daily stream flows at the outlet of the watershed. Statistical criteria for the calibration and validation results indicated a good agreement between the simulated and observed stream flows. The annual recharges calculated from the model were compared with the values from the conventional groundwater recession curve method, and the simulated groundwater levels were compared with the observed values. As a result, it was concluded that the model could reasonably simulate the groundwater level and recharge, and could be a useful tool for estimating spatially/temporally the groundwater recharges, and enhancing the analysis of the watershed water cycle.

Geochemical Modeling of Groundwater in Granitic Terrain: the Yeongcheon Area (영천 화강암지역 지하수의 지화학적 모델링)

  • Koh, Yong-Kwon;Kim, Chun-Soo;Bae, Dae-Seok;Yun, Seong-Taek
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.4
    • /
    • pp.192-202
    • /
    • 1998
  • We investigated the geochemistry and environmental isotopes of granite-bedrock groundwater in the Yeongcheon diversion tunnel which is located about 300 m below the land surface. The hydrochemistry of groundwaters belongs to the Ca-HCO$_3$type, and is controlled by flow systems and water-rock interaction in the flow conduits (fractures). The deuterium and oxygen-18 data are clustered along the meteoric water line, indicating that the groundwater are commonly of meteoric water origin and are not affected by secondary isotope effects such as evaporation and isotope exchange. Tritium data show that the groundwaters were mostly recharged before pre-thermonuclear period and have been mixed with younger surface water flowing down rapidly into the tunnel along fractured zones. Based on the mass balance and reaction simulation approaches, using both the hydrochemistry of groundwater and the secondary mineralogy of fracture-filling materials, we have modeled the low-temperature hydrogeochemical evolution of groundwater in the area. The results of geochemical simulation show that the concentrations of Ca$\^$2+/, Na$\^$+/ and HCO$_3$and pH of waters increase progressively owing to the dissolution of reactive minerals in flow paths. The concentrations of Mg$\^$2+/ and K$\^$+/ frist increase with the dissolution, but later decrease when montmorillonite and illitic material are precipitated respectively. The continuous adding of reactive minerals, namely the progressively larger degrees of water/rock interaction, causes the formation of secondary minerals with the following sequence: first hematite, then gibbsite, then kaolinite, then montmorillonite, then illtic material, and finally microcline. During the simulation all the gibbsite is consumed, kaolinite precipitates and then the continuous reaction converts the kaolinite to montmorillonite and illitic material. The reaction simulation results agree well with the observed, water chemistry and secondary mineralogy, indicating the successful applicability of this simulation technique to delineate the complex hydrogeochemistry of bedrock groundwaters.

  • PDF

Application of SWAT-CUP for Streamflow Auto-calibration at Soyang-gang Dam Watershed (소양강댐 유역의 유출 자동보정을 위한 SWAT-CUP의 적용 및 평가)

  • Ryu, Jichul;Kang, Hyunwoo;Choi, Jae Wan;Kong, Dong Soo;Gum, Donghyuk;Jang, Chun Hwa;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.347-358
    • /
    • 2012
  • The SWAT (Soil and Water Assessment Tool) should be calibrated and validated with observed data to secure accuracy of model prediction. Recently, the SWAT-CUP (Calibration and Uncertainty Program for SWAT) software, which can calibrate SWAT using various algorithms, were developed to help SWAT users calibrate model efficiently. In this study, three algorithms (GLUE: Generalized Likelihood Uncertainty Estimation, PARASOL: Parameter solution, SUFI-2: Sequential Uncertainty Fitting ver. 2) in the SWAT-CUP were applied for the Soyang-gang dam watershed to evaluate these algorithms. Simulated total streamflow and 0~75% percentile streamflow were compared with observed data, respectively. The NSE (Nash-Sutcliffe Efficiency) and $R^2$ (Coefficient of Determination) values were the same from three algorithms but the P-factor for confidence of calibration ranged from 0.27 to 0.81 . the PARASOL shows the lowest p-factor (0.27), SUFI-2 gives the greatest P-factor (0.81) among these three algorithms. Based on calibration results, the SUFI-2 was found to be suitable for calibration in Soyang-gang dam watershed. Although the NSE and $R^2$ values were satisfactory for total streamflow estimation, the SWAT simulated values for low flow regime were not satisfactory (negative NSE values) in this study. This is because of limitations in semi-distributed SWAT modeling structure, which cannot simulated effects of spatial locations of HRUs (Hydrologic Response Unit) within subwatersheds in SWAT. To solve this problem, a module capable of simulating groundwater/baseflow should be developed and added to the SWAT system. With this enhancement in SWAT/SWAT-CUP, the SWAT estimated streamflow values could be used in determining standard flow rate in TMDLs (Total Maximum Daily Load) application at a watershed.

Comparison of Landslide Susceptibility Analysis Considering the Characteristics of Landslide Trigger Points (산사태 발생지점의 특성을 고려한 취약성 분석 비교)

  • Shin, Hyun Woo;Lee, Su Gon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.2
    • /
    • pp.59-66
    • /
    • 2018
  • This study examined the correlation among topography, forest type, soil and geology in Inje area where landslides occurred during heavy rainfall from July 11 to July 18, 2006 to assess the landslide susceptibility. In order to assess the susceptibility of future landslides, landslides occurred in Inje area were classified into slide type and flow type, and slope angle, aspect, curvature, ridge and valley were extracted from the area. The landslide susceptibility was assessed by applying diameter class, age class, density, and forest type to Bayesianbased LR (Logistic Regression) model and WOE (Weight of Evidence) model, and the fitness of modeling was verified by predict rate curve. As the results of susceptibility assessment, using all landslides without no distintion, it was found that 75% of the LR model and 73% of the WOE model were fit in terms of the top 20% of the landslides. According to slide type and flow type in the top 20% of the landslides, it was found that 71% of the LR model and 69% of the WOE model were fit in terms of the slide type. Whereas, it was found that 86% of the LR model and 82% of the WOE model were fit in terms of the flow type. That is, the results of the LR model showed higher fitness than the results of the WOE model, and the fitness of the flow type was higher than that of the slide type. Consequently, it suggests that it is reasonable to assess and verify the landslide susceptibility according to the types of landslides.

Hydrogeological characteristics of the LILW disposal site (처분부지의 수리지질 특성)

  • Kim, Kyung-Su;Kim, Chun-Soo;Bae, Dae-Seok;Ji, Sung-Hoon;Yoon, Si-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.245-255
    • /
    • 2008
  • Korea Hydro and Nuclear Power Company(KHNP) conducted site investigations for a low and intermediate-level nuclear waste repository in the Gyeong Ju site. The site characterization work constitutes a description of the site, its regional setting and the current state of the geosphere and biosphere. The main objectives of hydogeological investigation aimed to understand the hydrogeological setting and conditions of the site, and to provide the input parameters for safety evaluation. The hydogeological characterization of the site was performed from the results of surface based investigations, i.e geological mapping and analysis, drilling works and hydraulic testing, and geophysical survey and interpretation. The hydro-structural model based on the hydrogeological characterization consists of one-Hydraulic Soil Domain, three-Hydraulic Rock Domains and five-Hydraulic Conductor Domains. The hydrogeological framework and the hydraulic values provided for each hydraulic unit over a relevant scale were used as the baseline for the conceptualization and interpretation of flow modeling. The current hydrogeological characteristics based on the surface based investigation include some uncertainties resulted from the basic assumption of investigation methods and field data. Therefore, the reassessment of hydrostructure model and hydraulic properties based on the field data obtained during the construction is necessitated for a final hydrogeological characterization.

  • PDF

Case Study of the Heavy Asian Dust Observed in Late February 2015 (2015년 2월 관측된 고농도 황사 사례 연구)

  • Park, Mi Eun;Cho, Jeong Hoon;Kim, Sunyoung;Lee, Sang-Sam;Kim, Jeong Eun;Lee, Hee Choon;Cha, Joo Wan;Ryoo, Sang Boom
    • Atmosphere
    • /
    • v.26 no.2
    • /
    • pp.257-275
    • /
    • 2016
  • Asian dust is a seasonal meteorological phenomenon influencing most East Asia, irregularly occurring during spring. Unusual heavy Asian dust event in winter was observed in Seoul, Korea, with up to $1,044{\mu}g\;m^{-3}$ of hourly mean $PM_{10}$, in 22~23 February 2015. Causes of such infrequent event has been studied using both ground based and spaceborne observations, as well as numerical simulations including ECMWF ERA Interim reanalysis, NOAA HYSPLIT backward trajectory analysis, and ADAM2-Haze simulation. Analysis showed that southern Mongolia and northern China, one of the areas for dust origins, had been warm and dry condition, i.e. no snow depth, soil temperature of ${\sim}0^{\circ}C$, and cumulative rainfall of 1 mm in February, along with strong surface winds higher than critical wind speed of $6{\sim}7.5m\;s^{-1}$ during 20~21 February. While Jurihe, China, ($42^{\circ}23^{\prime}56^{{\prime}{\prime}}N$, $112^{\circ}53^{\prime}58^{{\prime}{\prime}}E$) experienced $9,308{\mu}g\;m^{-3}$ of hourly mean surface $PM_{10}$ during the period, the Asian dust had affected the Korean Peninsula within 24 hours traveling through strong north-westerly wind at ~2 km altitude. KMA issued Asian dust alert from 1100 KST on 22nd to 2200 KST on 23rd since above $400{\mu}g\;m^{-3}$ of hourly mean surface $PM_{10}$. It is also important to note that, previously to arrival of the Asian dust, the Korean Peninsula was affected by anthropogenic air pollutants ($NO_3^-$, $SO_4^{2-}$, and $NH_4^+$) originated from the megacities and large industrial areas in northeast China. In addition, this study suggests using various data sets from modeling and observations as well as improving predictability of the ADAM2-Haze model itself, in order to more accurately predict the occurrence and impacts of the Asian dust over the Korean peninsula.