• Title/Summary/Keyword: soil model

Search Result 4,495, Processing Time 0.034 seconds

Real-Time Micro-Weather Factors of Growing Field to the Epidemics of Rice Blast (벼 도열병 Epidemics에 미치는 재배 포장 실황기상 요인)

  • Kwon, Jae-Oun;Lee, Soon-Gu
    • Research in Plant Disease
    • /
    • v.8 no.4
    • /
    • pp.199-206
    • /
    • 2002
  • It was investigated on the relationship of the rice blast epidemics and the real-time meteorological factors, at the experimental paddy field in 1997. Weather factors(temperature, relative humidity, irradiation, precipitation, the direction of wind, wind speed, soil temperature and leaf-wetness, etc) were measured by using the automated weather station. The most influenced weather factor to blast epidemics, was the average max-temp($R^2$= 0.95) during 10 days before leaf blast epidemics, while the least thing was wind speed($R^2$= 0.24). The most potential weather factors correlated with the blast epidemics were T-ave(average temperature), T-max(maximum temperature), RH(Relative Humidity) and RD(Relative Humidity > 90% hrs). A statistics model(the regression equation) of the blast epidemics with the potential weather factors, was established as tallows ; Y = -3410.91 - 23.91 $\times$ T-ave + 28.56 $\times$ T-max + 41.0 $\times$ RH - 3.75 $\times$ RD, ($R^2$= 0.99). (T-ave >= 19$^{\circ}C$, T-max - T-ave >= 5.2$^{\circ}C$ and RH% >= 90.4%). According to the fitness test($\chi$$^2$) of the model, the observed blast disease severity was quite close to those expected.

Verification of a Calibration Technique for a Full-Polarimetric Scatterometer System at C-band (C-밴드 완전 편파 측정용 스캐터미터 시스템 보정 기술 검증)

  • Park, Sin-Myeong;Go, Joo-Seoc;Joo, Jeong-Myeong;Kim, Hee-Young;Kim, Ju-Hui;Hwang, Ji-Hwan;Kwon, Soon-Gu;Shin, Jong-Chul;Oh, Yisok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.10
    • /
    • pp.1196-1203
    • /
    • 2012
  • This paper presents a study on the calibration of a C-band HPS(Hongik Polarimetric Scatterometer) system using the DMMCT(Differential Mueller Matrix Calibration Technique). For calibration of the polarimetric scatterometer system, a fully-polarimetric antenna pattern(magnitudes and phase-differences) of the antenna main-beam is measured using a conducting sphere at anechoic chamber. The polarimetric scatterometer system could be accurately calibrated after retrieving its distortions using the DMMCT. Unlike a single-polarimetric system, in a fully-polarimetric system, not only backscattering coefficients but also phase differences are important parameters. This calibrated HPS system can be used to measure accurate Mueller matrices of bare soil surfaces, rice paddies, and vegetation fields. The phase-difference parameters as well as the backscattering coefficients for co- and cross-polarizations can then be obtained. The accuracy of calibration was verified by comparing the measured backscattering coefficients with a scattering model. The measured polarization response of a plowed bare field was also compared with the polarization response which was synthesized using a polarimetric scattering model for verifying the calibration technique.

Investigation of Lateral Resistance of Short Pile by Large-Scale Load Tests (실물 재하시험을 통한 짧은말뚝의 횡방향 저항거동 평가)

  • Lee, Su-Hyung;Choi, Yeong-Tae;Lee, Il-Wha;Yoo, Min-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.8
    • /
    • pp.5-16
    • /
    • 2017
  • When a lateral load is applied to a short pile whose embedded depth is relatively smaller than its diameter, an overturning failure occurs. To investigate the behavior of laterally loaded short piles, several model tests in laboratory scales had been carried out, however the behavior of large moment carrying piles for electric poles, traffic sign and road lamp, etc. have not been revealed yet. This paper deals with the real-scale load tests for 750 mm diameter short piles. To simulate the actual loading condition, very large moment was mobilized by applying lateral loads to the location 8 m away from the pile head. Three load tests changing the pile embedded lengths to 2.0 m, 2.5 m, and 3.0 m were carried out. The test piles overturned abruptly with very small displacement and rotation before the failures. These brittle failures are in contrast with the ductile failures shown in the former model tests with the relatively smaller moment to lateral load ratio. Comparisons of the test results with three existing methods for the estimation of the ultimate lateral capacity show that the method assuming the rotation point at pile tip matches well when the embedded depth is small, however, as the embedded depth increases the other two methods assuming the inversion of soil pressure with respect to rotation points in pile length match better.

A Study on Bearing Capacity for Installed Rammed Aggregate Pier (RAP의 배치형태에 따른 지지력에 관한 연구)

  • Kim, Younghun;Cho, Changkoo;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.5
    • /
    • pp.19-26
    • /
    • 2009
  • Rammed Aggregate Pier (RAP) method is intermediate foundation between deep and shallow foundation, and it has been built in world wide. RAP represents a relatively new method that has grown steadily over 19 years since Geopier of USA developed this revolutionary method in 1989. The investigation and research in domestic is not accomplished. In this paper, the examined details of different spacing of piles, bearing capacities, respectively, conclude with recommendations on how RAP can be used in future needs. This documentation further provides comparisons of the laboratory test results which were obtained from changing the spacing of piles, namely installed rammed aggregate pier. Laboratory model test was administered in a sand box. Strain control test was conducted to determine the bearing capacities of the piers; 20 mm, 30 mm and 40 mm RAP in diameter using drilling equipment to make holes were installed in sand at initial relative densities of 40%. By comparing different spacing of piles, in this experiment, piles are spaced structually span, form a ring shape, narrowing the distance of each other, to the center. the result shows that as diameter of pier is bigger in diameter, bearing capacity also dramatically increased due to raised stiffness. Also, as the space between each piers was closed, the settlement rate of soil was decreased significantly. From the test results, as the space between each piles were getting closer, it allows greater chances to have more resistance to deformation, and shows more improved stability of structures. After from the verification work which is continuous leads the accumulation of the site measuring data which is various, and bearing capacity and the settlement is a plan where the research will be advanced for optimum installed RAP.

  • PDF

An Approach for Solid Modeling and Equipment Fleet Management Towards Low-Carbon Earthwork (저탄소 토공을 위한 솔리드 모델링 및 건설장비 플릿관리 방법론)

  • Kim, Sung-Keun;Kim, Gyu-Yeon;Park, Ju-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.501-514
    • /
    • 2015
  • Earthwork is a basic operation for all forms of civil works and affects construction time, cost and productivity. It is a mechanized operation that needs various construction equipment as a group and uses a lot of fuel for construction equipment. But, the problem is that earthwork operation is usually performed by equipment operator's heuristic and intuition, which can cause low productivity, high fuel consumption, and high carbon dioxide emission. As one of solutions for this problem, the fleet management system for construction equipment is suggested for effective earthwork planning, optimal equipment allocation, efficient machine operation, fast information exchange, and so forth. The purpose of this research is to suggest core methods for developing the equipment fleet management system. The methods include 3D solid parametric model generation, soil distribution using Cctree data structure, equipment fleet construction and equipment fleet operation. A simulation test is performed to verify the effectiveness of the equipment fleet management system in terms of equipment operating ratio, fuel usage, and $CO_2$ emission.

Impact of Changes in Climate and Land Use/Land Cover Change Under Climate Change Scenario on Streamflow in the Basin (기후변화 시나리오하의 기후 및 토지피복 변화가 유역 내 유출량에 미치는 영향 분석)

  • Kim, Jin Soo;Choi, Chul Uong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.107-116
    • /
    • 2013
  • This study is intended to predict variations in future land use/land cover(LULC) based on the representation concentration pathway(RCP) storyline that is a new climate change scenario and to analyze how future climate and LULC changes under RCP scenario affects streamflow in the basin. This study used climate data under RCP 4.5 and 8.5 and LULC change scenario is created by a model that is developed using storyline of RCP 4.5 and 8.5 and logistic regression(LR). Two scenarios(climate change only and LULC change only) were established. The streamflow in future periods under these scenarios was simulated by the Soil and Water Assessment Tool(SWAT) model. Each scenario showed a significant seasonal variations in streamflow. Climate change showed that it reduced streamflow in summer and autumn while it increased streamflow in spring and winter. Although LULC change little affected streamflow in the basin, the pattern for increasing and decreasing streamflow during wet and dry climate condition was significant. Therefore, it's believed that sustainable water resource policies for flood and drought depending on future LULC are required.

Estimation of PM10 Source Contributions on Three Cities in the Metropolitan Area by Using PMF Model (PMF 모델을 이용한 수도권 내 3개 도시에서의 PM10 오염원의 기여도 추정)

  • Lee, Tae-Jung;Huh, Jong-Bae;Yi, Seung-Muk;Kim, Shin-Do;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.4
    • /
    • pp.275-288
    • /
    • 2009
  • The Korean government strengthened the environmental polices to manage and enhance Metropolitan Area air quality, and also has enforced "Special Act on Seoul Metropolitan Air Quality Improvement (SASMAQI)" issued in Dec. 2004. Recently government expanded the Seoul Metropolitan Air Quality Management District (SMAQMD) to the outskirts satellite cities of Seoul area through the "Revised Law Draft of SASMAQI". The SMAQMD has been alloted the allowable emission loads to the local governments on the basis of the carrying $PM_{10}$ capacity. However, in order to establish the effective air quality control strategy for $PM_{10}$, it is necessary to understand the corresponding sources which have a potential to directly impact ambient $PM_{10}$ concentration. To deal with the situations, many receptor methodologies have been developed to identify the origins of pollutants and to determine the contributions of sources of interests. The objective of this study was to extensively identify $PM_{10}$ sources and to estimate their contributions at the metropolitan area. $PM_{10}$ samples were simultaneously collected at the 3 semi-industrialized local cities in the Seoul metropolitan area such as Hwasung-si, Paju-si, and Icheon-si sites from April 15 to May 31, 2007. The samples collected on the teflon membrane filter by one $PM_{10}$ cyclone sampler were analyzed for trace metals and soluble ions and samples on the quartz fiber filter by another sampler were analyzed for OC and EC. Source apportionment study was then performed by using a positive matrix factorization (PMF) receptor model. A total of 6 sources were identified and their contributions were estimated in each monitoring site. Contribution results on Hwasung, Paju, and Icheon sites were as follows: 33%, 27%, and 27% from soil source, 26%, 26%, and 21% from secondary aerosol source, 11%, 11%, and 12% from biomass burning, 12%, 6%, and 5% from sea salt, 7%, 15%, and 19% from industrial related source, and finally 11%, 15%, and 16% from mobile and oil complex source, respectively. This study provides information on the major sources affecting air quality in the receptor sites and thus it will help to manage the ambient air quality in the metropolitan area by establishing reasonable control strategies, especially for the anthropogenic emission sources.

On the Reclamation Earthwork Calculation using the Hermite and Spline Function (Hermite와 Spline 함수를 이용한 매립토공량 계산)

  • Mun, Du-Yeoul;Lee, Yong-Hee;Lee, Mun-Jae
    • Journal of Navigation and Port Research
    • /
    • v.26 no.4
    • /
    • pp.473-479
    • /
    • 2002
  • The estimation of the volume of a pit excavation is often required in many surveying, soil mechanics, highway applications and transportation engineering situations. The calculation of earthwork plays a major role in plan or design of many civil engineering projects such as seashore reclamation, and thus it has become very important to improve the accuracy of earthwork calculation. In this paper the spot height method, proposed formulas(A, B, C), and chen and Line method are compared with the volumes of the pits in these examples. And we proposed an algorithm of finding a terrain surface with the free boundary conditions and both direction spline method drawback, i.e., the modeling curves form peak points at the joints. To avoid this drawback, the cubic spline polynomial was chosen as the methematical model of the new method. From the characteristics of the cubic spline polynomial, the modeling curve of the new method was smooth and matched the ground profile well. As a result of this study, algorithm of proposed three methods to estimate pit excavation volume provided a better accuracy than spot height, chamber, chen and Lin method. And the mathematical model mentioned makes is thought to give a maximum acccuracy in estimating the volume of a pit excavation.

The Effect of Slope-based Curve Number Adjustment on Direct Runoff Estimation by L-THIA (경사도에 따른 CN보정에 의한 L-THIA 직접유출 모의 영향 평가)

  • Kim, Jonggun;Lim, Kyoung Jae;Park, Younshik;Heo, Sunggu;Park, Joonho;Ahn, Jaehun;Kim, Ki-sung;Choi, Joongdae
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.897-905
    • /
    • 2007
  • Approximately 70% of Korea is composed of forest areas. Especially 48% of agricultural field is practiced at highland areas over 400 m in elevation in Kangwon province. Over 90% of highland agricultural farming is located at Kangwon province. Runoff characteristics at the mountainous area such as Kangwon province are largely affected by steep slopes, thus runoff estimation considering field slopes needs to be utilized for accurate estimation of direct runoff. Although many methods for runoff estimation are available, the Soil Conservation Service (SCS), now Natural Resource Conservation Service (NRCS), Curve Number (CN)-based method is used in this study. The CN values were obtained from many plot-years dataset obtained from mid-west areas of the United States, where most of the areas have less than 5% in slopes. Thus, the CN method is not suitable for accurate runoff estimation where significant areas are over 5% in slopes. Therefore, the CN values were adjusted based on the average slopes (25.8% at Doam-dam watershed) depending on the 5-day Antecedent Moisture Condition (AMC). In this study, the CN-based Long-Term Hydrologic Impact Assessment (L-THIA) direct runoff estimation model used and the Web-based Hydrograph Analysis Tool (WHAT) was used for direct runoff separation from the stream flow data. The $R^2$ value was 0.65 and the Nash-Sutcliffe coefficient value was 0.60 when no slope adjustment was made in CN method. However, the $R^2$ value was 0.69 and the Nash-Sutcliffe value was 0.69 with slope adjustment. As shown in this study, it is strongly recommended the slope adjustment in the CN direct runoff estimation should be made for accurate direct runoff prediction using the CN-based L-THIA model when applied to steep mountainous areas.

Application of SWAT-CUP for Streamflow Auto-calibration at Soyang-gang Dam Watershed (소양강댐 유역의 유출 자동보정을 위한 SWAT-CUP의 적용 및 평가)

  • Ryu, Jichul;Kang, Hyunwoo;Choi, Jae Wan;Kong, Dong Soo;Gum, Donghyuk;Jang, Chun Hwa;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.347-358
    • /
    • 2012
  • The SWAT (Soil and Water Assessment Tool) should be calibrated and validated with observed data to secure accuracy of model prediction. Recently, the SWAT-CUP (Calibration and Uncertainty Program for SWAT) software, which can calibrate SWAT using various algorithms, were developed to help SWAT users calibrate model efficiently. In this study, three algorithms (GLUE: Generalized Likelihood Uncertainty Estimation, PARASOL: Parameter solution, SUFI-2: Sequential Uncertainty Fitting ver. 2) in the SWAT-CUP were applied for the Soyang-gang dam watershed to evaluate these algorithms. Simulated total streamflow and 0~75% percentile streamflow were compared with observed data, respectively. The NSE (Nash-Sutcliffe Efficiency) and $R^2$ (Coefficient of Determination) values were the same from three algorithms but the P-factor for confidence of calibration ranged from 0.27 to 0.81 . the PARASOL shows the lowest p-factor (0.27), SUFI-2 gives the greatest P-factor (0.81) among these three algorithms. Based on calibration results, the SUFI-2 was found to be suitable for calibration in Soyang-gang dam watershed. Although the NSE and $R^2$ values were satisfactory for total streamflow estimation, the SWAT simulated values for low flow regime were not satisfactory (negative NSE values) in this study. This is because of limitations in semi-distributed SWAT modeling structure, which cannot simulated effects of spatial locations of HRUs (Hydrologic Response Unit) within subwatersheds in SWAT. To solve this problem, a module capable of simulating groundwater/baseflow should be developed and added to the SWAT system. With this enhancement in SWAT/SWAT-CUP, the SWAT estimated streamflow values could be used in determining standard flow rate in TMDLs (Total Maximum Daily Load) application at a watershed.