DOI QR코드

DOI QR Code

Impact of Changes in Climate and Land Use/Land Cover Change Under Climate Change Scenario on Streamflow in the Basin

기후변화 시나리오하의 기후 및 토지피복 변화가 유역 내 유출량에 미치는 영향 분석

  • 김진수 (부경대학교 공간정보연구소) ;
  • 최철웅 (부경대학교 공간정보시스템공학과)
  • Received : 2013.05.07
  • Accepted : 2013.06.20
  • Published : 2013.06.30

Abstract

This study is intended to predict variations in future land use/land cover(LULC) based on the representation concentration pathway(RCP) storyline that is a new climate change scenario and to analyze how future climate and LULC changes under RCP scenario affects streamflow in the basin. This study used climate data under RCP 4.5 and 8.5 and LULC change scenario is created by a model that is developed using storyline of RCP 4.5 and 8.5 and logistic regression(LR). Two scenarios(climate change only and LULC change only) were established. The streamflow in future periods under these scenarios was simulated by the Soil and Water Assessment Tool(SWAT) model. Each scenario showed a significant seasonal variations in streamflow. Climate change showed that it reduced streamflow in summer and autumn while it increased streamflow in spring and winter. Although LULC change little affected streamflow in the basin, the pattern for increasing and decreasing streamflow during wet and dry climate condition was significant. Therefore, it's believed that sustainable water resource policies for flood and drought depending on future LULC are required.

본 연구는 새로운 기후변화 시나리오인 RCP 시나리오의 스토리라인을 기반으로 미래 토지피복변화를 예측하고, RCP 시나리오하의 미래 기후 및 토지피복 변화가 유역 내 유출량에 미치는 영향을 분석하는데 그 목적을 둔다. RCP 4.5 및 8.5하의 기후 자료가 기후변화 시나리오로 사용되었고, 토지피복변화 시나리오는 RCP 4.5 및 8.5 시나리오의 스토리라인과 로지스틱 회귀모형(LR)을 이용하여 개발된 모델에 의해 생성되었다. 기후변화만 고려한 경우, 토지피복변화만 고려한 경우로 두 가지 시나리오를 설정하고, 각각의 시나리오에 따른 대상 유역 내 유출량을 모의한 결과는 유출량의 계절적 변화를 뚜렷이 나타내었다. 기후변화는 봄과 겨울에 유출량을 증가, 여름과 가을에 유출량을 감소시키는 것으로 예측되었다. 반면 토지피복변화는 기후변화에 비해 상대적으로 유역 내 유출량 변화에 미소한 영향을 주지만, 강수 유무에 따라 유출량의 증가 및 감소 패턴이 뚜렷이 나타났다. 따라서 수자원 정책결정에 있어서 미래 토지피복변화에 따른 홍수 및 가뭄의 패턴에 적합한 수자원 정책이 필요할 것으로 판단된다.

Keywords

References

  1. Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R., 1998, Large area hydrologic modeling and assessment-Part 1: Model development, Journal of American Water Resources Association 34, pp. 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  2. Back, H.J., Cho, C.H., Kwon, W.T., Kim, S.K., Cho, J.Y., Kim, Y.S., 2011, Development strategy for new climate change scenarios based on RCP, Korea Climate Change Research, 2(1), pp. 55-68. https://doi.org/10.3724/SP.J.1248.2011.00055
  3. Dixon, B. and Earls, J., 2012, Effects of urbanization on streamflow using SWAT with real and simulated meteorological data, Applied Geography, 35, pp. 174-190. https://doi.org/10.1016/j.apgeog.2012.06.010
  4. EPA, 2009, Land-use scenarios: national-scale housing-density scenarios consistent with climate change storylines. Washington, DC 20460: U.S. Environment Protection Agency, 137 pp.
  5. Ficklin, D.L., Luo, Y., Luedeling, E., Zhang, M., 2009. Climate change sensitivity assessment of a highly agricultural watershed using SWAT. Journal of Hydrology 374, 16-29. https://doi.org/10.1016/j.jhydrol.2009.05.016
  6. IPCC, 2007, Climate Change 2007: The Scientific Basis, IPCC Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge.
  7. Jeong, H.G., 2012, Assessment of climate change impacts on water supply by Chungju multi-purpose dam based on RCP emission scenarios, Ph.D. Thesis, Kunkuk University, Seoul, South Korea.
  8. Kim, J., Choi, J., Choi, C., Park, S., 2013, Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on streamflow in the Hoeya River Basin, Korea, Science of the Total Environment, 452-453, pp. 181-195. https://doi.org/10.1016/j.scitotenv.2013.02.005
  9. Kim, N.W., Chung, I.M., Won, Y.S., 2006, An integrated surface water-ground water modeling by using fully combined SWAT-MODFLOW model, Journal of the Korean Society of Civil Engineers, 26(5B), pp. 481-488.
  10. Kim, S.J., Kim, B.S., Jun, H.D., Kim, H.S., 2010, The evaluation of climate change impacts on the water scarcity of the Han River Basin in South Korea using high resoulution RCM data, Journal of Korea Water Resource Association, 43(3), pp. 295-308. https://doi.org/10.3741/JKWRA.2010.43.3.295
  11. KOSIS, 2012, Korea statistical information service website, http://kosis.kr/. (accessed October 2012)
  12. Lee, Y.J., An, S.R., Kang, B.S., Kim, S.J., 2008, Assessement of future climate and land use change on hydrology and stream water quality of Anseongcheon Watershed using SWAT model(II), Journal of the Korean Society of Civil Engineers, 28(6B), pp. 665-673.
  13. NABO, 2007, Long-term prediction of real GDP in Korea, National Assembly Budget Office report no. 31-9700231-000316-14, 49 p.
  14. Nash, J.E. and Sutcliffe, J.V., 1970, Review flow forecasting through conceptual models I: a discussion of principles, Journal of Hydrology, 10, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  15. NIMR, 2011, Climate change scenario report 2011 for the corresponding IPCC fifth assessment report, Korea National Institute of Meterological Research, 117 pp.
  16. Park, S., 2013, Urban growth prediction under the socio-economic scenarios based on climate change in the South Korea, Ph.D. Thesis, Pukyong National University, Busan, South Korea.
  17. Pontius R.G. and Schneider L.C., 2001, Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA, Agriculture, Ecosystems and Environment, 85, pp. 239-248. https://doi.org/10.1016/S0167-8809(01)00187-6
  18. Praskievicz, S. and Chang, H., 2011, Impacts of climate change and urban development on water resources in the Tualatin River Basin, Oregon, Annals of Association of American Geographers, 101, pp. 249-271. https://doi.org/10.1080/00045608.2010.544934
  19. Qi, S., Sun, G., Wang, Y., McNulty, S.G., Moore Myers, J.A., 2009, Streamflow response to climate and landuse changes in a coastal watershed in North Carolina, Transactions of the ASABE 52, pp. 739-749. https://doi.org/10.13031/2013.27395
  20. Van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J.F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S.J., Rose, S.K., 2011, The representative concentration pathways: an overview, Climate Change 109, pp. 5-31. https://doi.org/10.1007/s10584-011-0148-z
  21. Yilmaz, I., 2009, Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat-Turkey), Computers & Geosciences, 35(6), pp. 1125-1138. https://doi.org/10.1016/j.cageo.2008.08.007

Cited by

  1. Assessment of Climate Change Impacts on Hydrology and Snowmelt by Applying RCP Scenarios using SWAT Model for Hanriver Watersheds vol.55, pp.5, 2013, https://doi.org/10.5389/KSAE.2013.55.5.037
  2. Impact of IPCC RCP Scenarios on Streamflow and Sediment in the Hoeya River Basin vol.22, pp.3, 2014, https://doi.org/10.7319/kogsis.2014.22.3.011
  3. Estimation of Future Land Cover Considering Shared Socioeconomic Pathways using Scenario Generators vol.9, pp.3, 2013, https://doi.org/10.15531/ksccr.2018.9.3.223