DOI QR코드

DOI QR Code

Investigation of Lateral Resistance of Short Pile by Large-Scale Load Tests

실물 재하시험을 통한 짧은말뚝의 횡방향 저항거동 평가

  • Lee, Su-Hyung (Metropolitan Railway Research Center, Korea Railroad Research Institute) ;
  • Choi, Yeong-Tae (High-speed Railroad Systems Research Center, Korea Railroad Research Institute) ;
  • Lee, Il-Wha (High-speed Railroad Systems Research Center, Korea Railroad Research Institute) ;
  • Yoo, Min-Taek (High-speed Railroad Systems Research Center, Korea Railroad Research Institute)
  • 이수형 (한국철도기술연구원 광역도시교통연구본부) ;
  • 최영태 (한국철도기술연구원 고속철도연구본부) ;
  • 이일화 (한국철도기술연구원 고속철도연구본부) ;
  • 유민택 (한국철도기술연구원 고속철도연구본부)
  • Received : 2017.07.05
  • Accepted : 2017.08.08
  • Published : 2017.08.31

Abstract

When a lateral load is applied to a short pile whose embedded depth is relatively smaller than its diameter, an overturning failure occurs. To investigate the behavior of laterally loaded short piles, several model tests in laboratory scales had been carried out, however the behavior of large moment carrying piles for electric poles, traffic sign and road lamp, etc. have not been revealed yet. This paper deals with the real-scale load tests for 750 mm diameter short piles. To simulate the actual loading condition, very large moment was mobilized by applying lateral loads to the location 8 m away from the pile head. Three load tests changing the pile embedded lengths to 2.0 m, 2.5 m, and 3.0 m were carried out. The test piles overturned abruptly with very small displacement and rotation before the failures. These brittle failures are in contrast with the ductile failures shown in the former model tests with the relatively smaller moment to lateral load ratio. Comparisons of the test results with three existing methods for the estimation of the ultimate lateral capacity show that the method assuming the rotation point at pile tip matches well when the embedded depth is small, however, as the embedded depth increases the other two methods assuming the inversion of soil pressure with respect to rotation points in pile length match better.

근입깊이가 직경에 비하여 상대적으로 작은 말뚝은 편심이 큰 횡방향 하중을 받는 경우 전도되어 파괴된다. 지금까지 횡방향하중을 받는 짧은말뚝의 지지거동에 대해서는 주로 모형실험을 적용한 연구가 수행되었지만, 전주, 표지판, 가로등 기초와 같이 매우 큰 모멘트를 받는 짧은말뚝의 지지거동은 아직까지 명확히 규명된 바 없다. 본 연구에서는 직경 750mm의 실물크기 말뚝에 대한 재하시험을 수행하였다. 실제 하중조건을 모사하기 위하여 기초로 부터 8m 이격된 지점에 횡방향 하중을 가하여 매우 큰 모멘트를 유발하였으며, 말뚝의 근입깊이를 2.0m, 2.5m, 3.0m로 변화시킨 3회의 시험을 수행하였다. 시험결과 큰 모멘트를 받는 짧은말뚝은 파괴 직전까지 변위나 회전각이 거의 발생하지 않다가 전도로 인해 급격한 변위가 발생하는 취성형태로 파괴 되었다. 이러한 거동은 기존의 횡방향 위주의 하중을 받는 짧은말뚝에서 나타난 연성파괴 거동과는 대조적이다. 기존에 제안된 세 종류의 지지력 예측식으로 부터 구한 짧은말뚝의 극한 횡방향지지력을 시험결과와 비교하였으며, 말뚝 근입깊이가 상대적으로 작은 경우는 말뚝선단 중심의 회전을 가정한 제안식이 적절하지만, 근입깊이가 커지면서 회전점을 중심으로 응력방향이 반전되는 토압분포를 가정한 제안식이 보다 적절한 것으로 평가되었다.

Keywords

References

  1. Briaud, J. L. Smith, T. D. and Meyer, B. (1983), "Using the Pressuremeter Curve to Design Laterally Loaded Piles", Proc. Of 15th Offshore Technology Conference, Huston, paper 4501, pp. 495-502.
  2. Brinch Hansen, J. (1961), "The Ultimate Resistance of Rigid Piles Against Transversal Forces", The Danish Geotechnical Institute, Bulletin No. 12, Copenhagen, pp.1-9.
  3. Broms, B. B. (1964), "Lateral Resistance of Piles in Cohesionless Soils", Journal of Soil Mechanics and Foundations Division, ASCE, 90(3), pp.123-158.
  4. Dickin, E. A. and Laman, M. (2003), "Moment Response of Short Rectangular Piers in Sand", Computers and Structures, Vol.81, No.30, pp.2717-2729. https://doi.org/10.1016/S0045-7949(03)00337-7
  5. Fleming, W. G. K., Weltman, A. J., Randolph, M. F., and Elson, W. K. (1992), Piling engineering, Wiley, New York.
  6. Korea Rail Network Authority (2015), Railway Design Standard, Korea Rail Network Authority, Daejeon.
  7. Lee, J., Kim, M., and Kyung, D. (2010), "Estimation of Lateral Load Capaciity of Rigid Short Piles in Sands Using CPT Results", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.136, No.1, pp.48-56. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000199
  8. Lee, S-H., Lee, S-J., and Lee, I-W. (2012), "Experimental Evaluation of the Moment Capacity of a Railway Electric Pole Foundation Adjacent to a Fill Slope", Journal of Geotechnical and Geoenvironmental Engineering, Korean Geotechnical Society, Vol.28, No.6, pp.5-17.
  9. Li, W., Zhu, B., and Yang, M. (2017), "Static Response of Monopile to Lateral Load in Overconsolidated Dense Sand", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.143, No.7, pp.04017026-1-12. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001698
  10. Meyerhof, G. G., Mathur, S. K., and Valsangkar, A. J. (1981), "Lateral Resistance and Deflection of Rigid Wall and Piles in Layered Soils", Canadian Geotechnical Journal, Vol.18, No.2, pp.159-170. https://doi.org/10.1139/t81-021
  11. Mohammadi, S. D., Nikoudel, M. R., Rahimi, H., and Khamehchiyan, M. (2008), "Application of the Dynamic Cone Penetrometer (DCP) for Determination of the Engineering Parameters of Sandy Soils", Engineering Geology, 101, pp.195-203. https://doi.org/10.1016/j.enggeo.2008.05.006
  12. Petrasovits, G. and Award, A. (1972), "Ultimate Lateral Resistance of a Rigid Pile in Cohesionless Soil", Proc., 5th European Conf. on SMFE 3, The Spanish Society for Soil Mechanics and Foundation, pp.407-412.
  13. Prasad, Y. V. S. N. and Chari, T. R. (1999), "Lateral Capacity of Model Rigid Piles in Cohesionless Soils", Soils and Foundation, Vol.39, No.2, pp.21-29. https://doi.org/10.3208/sandf.39.2_21
  14. Reese, L. C. and Van Impe, W. F. (2001), Single piles and pile groups under lateral loading, Taylor & Francis, London.
  15. Reese, L. C., Cox, W. R., and Koop, F. D. (1974), "Analysis of Laterally Loaded Piles in Sand", Proc., 6th Annual Offshore Technology Conference, Offshore Technology Conference, Dallas, pp.473-485.
  16. Smith, T. D. (1987), "Pile Horizontal Soil Modulus Values", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.113, No.9, pp.1040-1044. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:9(1040)
  17. Zhang, L., Silva, F., and Grismala, R. (2005), "Ultimate Lateral Resistance to Piles in Cohesionless soils", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.131, No.1, pp.78-83. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:1(78)